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We show the results for the DGLAP and BFKL evolution equations in the N = 4 supersym-
metric gauge theory obtained earlier in the next-to-leading approximation. The eigenvalue
of the BFKL kernel in this model turns out to be an analytic function of the conformal
spin |n|. The corresponding kernel for the Bethe–Salpeter equation has the property of the
Hermitian separability. The anomalous dimension matrix can be transformed to a triangle
form with the use of the similarity transformation for the diagonalization of the anomalous
dimension matrix in the leading order. The eigenvalues of these matrices can be expressed
in terms of a universal function by an integer shift of its argument. We also investigate in
this approximation possible relations between the DGLAP and BFKL equations.

1 Introduction

The Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [1] and the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) equation [2] are used now for a theoretical description of structure
functions of the deep-inelastic ep scattering at small values of the Bjorken variable x. The
higher-order QCD corrections to the splitting kernels of the DGLAP equation are well known.
But the calculation of the next-to-leading order (NLO) corrections to the BFKL kernel was
completed recently [3, 4].

In supersymmetric gauge theories the structure of the BFKL and DGLAP equations is sim-
plified significantly. In the case of an extended N = 4 SUSY the NLO corrections to the BFKL
equation were calculated in ref. [4] for arbitrary values of the conformal spin n. Below these
results are presented in the dimensional reduction (DR) scheme [5] which does not violate the
supersymmetry. The analyticity of the eigenvalue of the BFKL kernel as a function of the con-
formal spin |n| gives a possibility to relate in the leading logarithmic approximation (LLA) the
DGLAP and BFKL equations in this model (see [4]). It was shown [6] that the eigenvalue of the
BFKL kernel has the property of Hermitian separability similar to the holomorphic separability.

Let us introduce the unintegrated parton distributions ϕa(x, k2
⊥) (hereafter a = q, g, ϕ for

the spinor, vector and scalar particles, respectively) and the (integrated) parton distributions
na(x, Q2). In DIS Q2 = −q2 and x = Q2/(2pq) are the Bjorken variables, k⊥ is the trans-
verse component of the parton momentum and q and p are the photon and hadron momenta,
respectively.

After the Mellin transformation of partonic distributions na

(
x, Q2

)
the DGLAP equation can

be written as follows [2]

d

d lnQ2
na

(
j, Q2

)
=

∑
b

γab(j)nb

(
j, Q2

) (
na

(
j, Q2

)
=

∫ 1

0
dx xj−1na

(
x, Q2

))
.

The Mellin moment of the splitting kernel γab(j) coincides with the anomalous dimension
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(AD) matrix for the twist-2 operators1. These operators are constructed as bilinear combinations
of the fields which describe corresponding partons

Og
µ1,...,µj

= ŜGρµ1Dµ2Dµ3 · · ·Dµj−1Gρµj , Õg
µ1,...,µj

= ŜGρµ1 Dµ2 Dµ3 · · ·Dµj−1G̃ρµj ,

Oq
µ1,...,µj

= ŜΨγµ1 Dµ2 · · ·DµjΨ, Õq
µ1,...,µj

= ŜΨγ5 γµ1 Dµ2 · · ·DµjΨ,

Oϕ
µ1,...,µj

= ŜΦ̄Dµ1Dµ2 · · ·DµjΦ, (1)

where the spinor Ψ and field tensor Gρµ describe gluinos and gluons, respectively. The last
expression is constructed from the covariant derivatives Dµ of the scalar field Φ appearing in
extended supersymmetric models. The symbol Ŝ implies a symmetrization of the tensor in the
Lorenz indices µ1, . . . , µj and a subtraction of its traces.

On the other hand, the BFKL equation relates the unintegrated gluon distributions with
small values of the Bjorken variable x:

d

d ln (1/x)
ϕg(x, k2

⊥) = 2ω(−k2
⊥)ϕg(x, k2

⊥) +
∫

d2k′
⊥K(k⊥, k′

⊥)ϕg

(
x, (k′

⊥)2
)
,

where ω(−k2
⊥) < 0 is the gluon Regge trajectory [1].

The matrix elements of Oa
µ1,...,µj

and Õa
µ1,...,µj

are related to the moments of the parton
distributions na

(
x, Q2

)
and ∆na

(
x, Q2

)
in a hadron h in the following way∫ 1

0
dx xj−1na

(
x, Q2

)
= 〈h | ñµ1 · · · ñµjOa

µ1,...,µj
|h〉, a = (q, g, ϕ),∫ 1

0
dx xj−1∆na

(
x, Q2

)
= 〈h | ñµ1 · · · ñµj Õa

µ1,...,µj
|h〉, a = (q, g). (2)

Here the vector ñµ is light-like: ñ2 = 0. Note, that in the deep-inelastic ep scattering we have
ñµ ∼ qµ + xpµ.

The quantum numbers appeared in the solution of the BFKL equation being the integer
conformal spin |n| and the quantity 1 + ω (ω is an eigenvalue of the BFKL kernel) coincides
respectively with the total numbers of transversal and longitudinal Lorentz indices of the tensor
Oa

µ1,...,µJ
with the rank J = 1 + ω + |n|. The corresponding matrix elements can be expressed

through the solution of the BFKL equation

ñµ1 · · · ñµ1+ω l
µ2+ω

⊥ · · · lµj

⊥ 〈P |Og
µ1,...,µj

|P 〉 ∼
∫ 1

0
dxxω

∫
d2k⊥

(
k⊥
|k⊥|

)n

ϕg

(
x, k2

⊥
)
.

It is important that the AD matrices γab(j) and γ̃ab(j) for the twist-2 operators Oa
µ1,...,µj

and
Õa

µ1,...,µj
do not depend on various projections of indices due to the Lorentz invariance. But

generally the Lorentz spin j is less then J . Thus, it looks reasonable to extract some additional
information concerning the parton x-distributions satisfying the DGLAP equation from the
analogous k⊥-distributions satisfying the BFKL equation.

In LLA the integral kernel of the BFKL equation is the same in all supersymmetric gauge
theories. Due to the Möbius invariance in the impact parameter representation the solution of
the homogeneous BFKL equation has the form (see [7])

Eν,n(−→ρ10,
−→ρ20) ≡ 〈φ(−→ρ1)Om,m̃(−→ρ0)φ(−→ρ2)〉 =

(
ρ12

ρ10ρ20

)m (
ρ∗12

ρ∗10ρ
∗
20

)m̃

,

1As in ref. [3,4], the anomalous dimensions differ from those used usually in the description of DIS by a factor
(−2), i.e. γab(j) = (−1/2)γDIS

ab (j).
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where m = 1/2 + iν + n/2 and m̃ = 1/2 + iν − n/2 are conformal weights related to the
eigenvalues of the Casimir operators of the Möbius group. We introduced also the complex
variables ρk = xk + iyk in the transverse subspace and used the notation ρkl = ρk − ρl.

For the principal series of the unitary representations the quantities ν and n are respectively
real and integer numbers. The projection n of the conformal spin |n| can be positive or negative,
but the eigenvalue of the BFKL equation in LLA [1]

ω = ω0(n, ν) = 8a

(
Ψ(1) − Re Ψ

(
1
2

+ iν +
|n|
2

))
, a =

g2Nc

16π2
=

αsNc

4π
(3)

depends only on |n|. The Möbius invariance takes place also for the Schrödinger equation
describing the composite states of several reggeized gluons [8]. As a consequence of the relation

ω0(n, ν) = ω0(m) + ω0(m̃), ω0(m) = 2a
(
2Ψ(1) − Ψ(m) − Ψ(1 − m)

)
.

one obtains the property of the holomorphic separability H = h + h∗, [h, h∗] = 0 for the
Hamiltonian of an arbitrary number of reggeized gluons in the multi-colour QCD [9]. In the same
limit the BFKL dynamics is completely integrable [10, 11] and the holomorphic Hamiltonian h
coincides with the local Hamiltonian for an integrable Heisenberg spin model [12]. Moreover
the theory turns out to be invariant under the duality transformation [13]. Presumably the
remarkable mathematical properties of the reggeon dynamics in LLA are consequences of the
extended N = 4 supersymmetry [14]. It was argued also in ref. [14] that generalized DGLAP
equations for the matrix elements of quasi-partonic operators [15] for N = 4 SUSY are integrable.

The solution of the inhomogeneous BFKL equation in the LLA approximation can be con-
structed in the impact parameter representation and for −→ρ1′ → −→ρ2′ we obtain [7]

〈φ(−→ρ1)φ(−→ρ2)φ(−→ρ1′)φ(−→ρ2′)〉 ∼
∑

n

C(νω, |n|)Eνω,|n|(
−−→ρ11′ ,

−−→ρ21′)
ω′(|n|, νω)

|ρ1′2′ |1+2iνω

(
ρ1′2′

ρ∗1′2′

)|n|/2

,

where νω is a solution of the equation ω = ω0(|n|, ν) with Im νω < 0.
The above asymptotics has a simple interpretation in terms of the Wilson operator-product

expansion of two reggeon fields produced the local operator Oνω,|n|(
−→ρ1′) having the transverse

dimension Γω = 1 + iνω calculated in units of a squared mass. The corresponding tensor has
a mixed projections of a gauge-invariant tensor O with J = 1 + ω + |n| indices. Note, that
because Γω is real in the deep-inelastic regime ρ12 → 0, the operator Oνω,|n|(

−→ρ1′) belongs to an
exceptional series of unitary representations of the Möbius group (see [16]).

The AD γ(j) obtained from the BFKL equation in LLA (3) has the poles

Γω = 1 +
|n|
2

− γ(j), γ(j)|ω→0 =
4a

ω
. (4)

The operator Oνω,|n| for |n| = 1, 2, . . . has the twist higher than 2 because its AD γ is singular
at ω → 0. In the paper [4] the analytic continuation of the BFKL AD γ(|n|, ω) to the points
|n| = −r − 1 (r = 0, 1, 2, . . .) was suggested to calculate the AD singularities in the twist-2
operators in negative integer J = 1 + ω + |n| → −r. Because for positive |n| and ω → 0 the
quantity γ(|n|, ω) corresponds to higher twist operators, to obtain γ for the twist-2 operators,
one should push ∆|n| = |n|+ r + 1 to zero at ω → 0 sufficiently rapidly ∆|n| = C(r)ω2. In LLA
the results obtained from the BFKL equation γ(j)|j→−r = 4a

j+r for r = −1, 0, 1, . . . coincide with
the direct calculation of the eigenvalues of the AD matrix γa,b for N = 4 SUSY in accordance
with the fact, that only in this theory the eigenvalue of the BFKL equation is an analytic
function of |n| [4]. It is important that the AD is the same for all twist-2 operators entering
in the N = 4 supermultiplet up to a shift of its argument by an integer number, because this
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property leads to an integrability of the evolution equations for quasi-partonic operators [15] in
the multi-color limit Nc → ∞ (see [14]).

In the NLO approximation for the BFKL equation there is a difficulty related to an appearan-
ce of the double-logarithmic (DL) terms leading to triple poles at j = −r for even r. The origin of
the DL terms can be understood in a simple way using as an example the process of the forward
annihilation of the e+e− pair in the µ+µ− pair in QED [17]. For this process the t-channel partial
wave fω (ω = j) in the DL approximation can be written as follows fω = γ−1

ω − αem

2π
(

1
ω−γ

+ 1
γ

) . By

expanding perturbatively the position of the pole in γ we shall generate the triple pole term in
the AD ∆γ ∼ α2

em/ω3.
It is important to note that the equation for the pole position of fω is similar to the BFKL

equation in the modified leading logarithmic approximation

ω ∼ 2Ψ(1) − Ψ(1 + |n| + ω − γ) − Ψ(γ), |n| = −1,−2, . . . .

2 NLO corrections to the BFKL kernel in the N = 4 SUSY

Let us introduce the new variables M = γ + |n|
2 , M̃ = γ − |n|

2 , γ = 1
2 + iν. Then the eigenvalue

relation for the BFKL equation in the DR-scheme can be written in the Hermitially separabel
form [6]

1 =
4â

ω

(
2Ψ(1) − Ψ(M) − Ψ(1 − M̃) + â

(
φ(M) + φ(1 − M̃)

))
− 2â

(
ρ(M) + ρ(1 − M̃)

)
, â = a +

a2

3
, a =

g2Nc

16π2
, (5)

where a (see (3)) and â are expressed through the Yang–Mills constants g in the MS and DR-
schemes, respectively, and

ρ(M) = β′(M)+
1
2
ζ(2), φ(M) = 3ζ(3)+Ψ′′(M)−2Φ2(M)+2β′(M)

(
Ψ(1) − Ψ(M)

)
. (6)

Here

Ψ(M) =
Γ′(M)
Γ(M)

, β′(z) =
∞∑
l=0

(−1)l+1

(l + z)2
, Φ2(M) =

∞∑
k=0

(
β′(k + 1) + (−1)kΨ′(k + 1)

)
k + M

.

In the right-hand side of the eigenvalue equation the first contribution corresponds to the sin-
gularity at l = −1 generated by the pole of the Legendre function Ql(x) in the kernel at
ω = 1 + l → 0 and the last term appears from the regular part of the Born contribution.
Note that M and 1− M̃ coincide with the anomalous dimensions appearing in the asymptotical
expressions for the BFKL kernel in the limits when the gluon virtualities are large: q2

1 → ∞
and q2

2 → ∞, respectively. Because 1 − M̃ = M∗, the Hermitian separability guarantees the
symmetry of ω for the principal series of the unitary representations of the Möbius group to the
substitution ν → −ν and the Hermicity of the BFKL Hamiltonian. It turns out, however, that
the holomorphic separability corresponding to the symmetry m ↔ m̃ is violated in the NLO
approximation [6].

Analogously to refs. [3, 4] one can calculate the eigenvalues of the BFKL kernel in the case
of the non-symmetric choice for the energy normalization s0 in equation (15) related to the
interpretation of the NLO corrections in the framework of the renormalization group. For the
scale s0 = q2 natural for the deep-inelastic scattering we obtain the corresponding eigenvalue
equation

1 = 4âω−1 (2Ψ(1) − Ψ(γ) − Ψ(J − γ) + â (φ(γ) + φ(J − γ)))
+ 2â

(
Ψ′(γ) − ρ(γ) + Ψ′(J − γ) − ρ(J − γ)

)
. (7)
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3 Anomalous dimension matrix in the N = 4 SUSY

In LLA AD matrices in the N=4 SUSY have the following form (see [18]):
for tensor twist-2 operators (hereafter Ψ(j + 1) − Ψ(1) ≡ S1(j))

γ(0)
gg (j) = 4

(
−S1(j − 2) − 2

j
+

1
j + 1

− 1
j + 2

)
, γ(0)

qg (j) = 8
(

1
j
− 2

j + 1
+

2
j + 2

)
,

γ(0)
ϕg (j) = 12

(
1

j + 1
− 1

j + 2

)
, γ(0)

gq (j) = 2
(

2
j − 1

− 2
j

+
1

j + 1

)
, γ(0)

qϕ (j) =
8
j
,

γ(0)
qq (j) = 4

(
−S1(j − 1) +

1
j
− 2

j + 1

)
, γ(0)

ϕq (j) =
6

j + 1
,

γ(0)
ϕϕ(j) = −4S1(j), γ(0)

gϕ (j) = 4
(

1
j − 1

− 1
j

)
, (8)

for the pseudo-tensor operators:

γ̃(0)
gg (j) = 4

(
−S1(j) − 2

j + 1
+

2
j

)
, γ̃(0)

qq (j) = 4
(
−S1(j) +

1
j + 1

− 1
j

)
,

γ̃(0)
qg (j) = 8

(
−1

j
+

2
j + 1

)
, γ̃(0)

gq (j) = 2
(

2
j
− 1

j + 1

)
. (9)

Note that in the N = 4 SUSY multiplet there are twist-2 operators with fermion quantum
numbers but their AD are the same as for the bosonic components of the corresponding su-
permultiplet (cf. ref. [15]). It is possible to construct 5 independent twist-two operators with
a multiplicative renormalization. The corresponding parton distribution momenta and their
LLA AD have the form [18]:

nI(j) = nj
g + nj

q + nj
ϕ, γ

(0)
I (j) = −4S1(j − 2) ≡ γ

(0)
+ (j),

nII(j) = −2(j − 1)nj
g + nj

q +
2
3
(j + 1)nj

ϕ, γ
(0)
II (j) = −4S1(j) ≡ γ

(0)
0 (j),

nIII(j) = −j − 1
j + 2

nj
g + nj

q −
j + 1

j
nj

ϕ, γ
(0)
III(j) = −4S1(j + 2) ≡ γ

(0)
− (j),

nIV (j) = 2∆nj
g + ∆nj

q, γ
(0)
IV (j) = −4S1(j − 1) ≡ γ̃

(0)
+ (j),

nV (j) = −(j − 1)∆nj
g +

j + 2
2

∆nj
q, γ

(0)
V (j) = −4S1(j + 1) ≡ γ̃

(0)
− (j).

Thus, we have one supermultiplet of operators with the same AD γLLA(j) proportional to
Ψ(1) − Ψ(j − 1). The momenta of the corresponding linear combinations of the parton distri-
butions can be obtained from the above expressions by an appropriate shift of their argument j
to obtain this universal anomalous dimension γLLA(j). Moreover, the coefficients in these linear
combinations for N = 4 SUSY can be found from the super-conformal invariance (cf. ref. [15]).
However, in two-loop approximation these coefficients are slightly renormalized [19] due to the
breaking of the conformal invariance [20]. In the paper [6] using some plausible arguments an
universal AD in two-loops for N = 4 SUSY in the DR-scheme was suggested. Other AD are
obtained by an integer shift of its arguments. These results were justified by a direct calculation
of the AD matrix in ref. [19]2. With the use of the basis for the multiplicatively renormalizable
operators obtained in LLA in [6] one can transform this matrix to a triangle form. The diagonal
elements of the triangle matrix are expressed in terms of the universal AD γ(j) by an appropriate
integer shift of its argument:

γ(j) = −4â
(
S1(j − 2) + 4âQ(j − 2)

)
, (10)

2Note that in [19] the results have been obtained in DR-scheme but with the MS coupling constant a that
leads to the additional term −1/3S1(j) in the NLO correction Q(j).
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where

Q(j) = S−2,1(j) − S1(j)
(
S2(j) + S−2(j)

) − (
S3(j) + S−3(j)

)
/2,

Sk(n) =
n∑

i=1

1
ik

, ζ(k) =
∞∑
i=1

1
ik

, S−k(n) =
n∑

i=1

(−1)i

ik
, S−k,l(n) =

n∑
i=1

(−1)i

ik
Sl(i).

The analytical continuation of functions γ
(1)
ab (a, b = g, q, ϕ) and γ̃

(1)
ab (a, b = g, q) to the complex

values of j can be done analogously to refs. [21, 6].

4 Relation between the DGLAP and BFKL equations

As we have discussed already above, in the case of N = 4 SUSY the BFKL eigenvalue is analytic
in |n| and one can continue the AD to the negative values of |n|. It gives a possibility to find
the AD singular contributions in the twist-2 operators not only at j = 1 but also at other
integer points j = 0,−1,−2, . . .. As it was discussed already in the Introduction, in the Born
approximation we obtain γ = 4â(Ψ(1)−Ψ(j − 1)), which coincides with the result of the direct
calculations (see [14, 18]). Thus, in the case of N = 4 the BFKL equation presumably contains
the information sufficient for restoring the kernel of the DGLAP equation. Below we investigate
the relation between these equations in the NLO approximation.

Let us start with an investigation of AD singularities obtained from the DGLAP equation.
By presenting the Lorentz spin j as ω − r, where r = −1, 0, 1, . . . and pushing ω → 0 we can
calculate the singular behavior of the universal anomalous dimension γ(j)

γ(j) = 4â

[
1
ω
− S1(r + 1) + O(ω)

]
(11)

+ (4â)2
{ 1

ω3
− 2S1(r + 1)

1
ω2

− (ζ(2) + S2(r + 1))
1
ω

+ O
(
ω0

)
if r = 2m,

S2(r + 1)
1
ω

+ O
(
ω0

)
if r = 2m + 1.

Let us consider initially the BFKL equation in a modified LLA, i.e. when ωMLLA = 4 â
(
2Ψ(1)

−Ψ(γ) − Ψ(J − γ)
)
. In the limit J = 1 + |n| + ω → −r + ω by inverting this equation one can

obtain

γ =
4â

ω
+ (4â)2

[
1
ω3

− S1(r)
1
ω2

− (ζ(2) + S2(r))
1
ω

]
+ O

(
â3

)
, (12)

i.e. this result coincides after the shift r → r + 1 with the singular part of the corresponding
DGLAP result for the even values of r with the exception of the coefficient in the front of â2/ω2.

In a general case the next-to-leading corrections contain the divergencies at |n| → −r − 1.
Their appearance is related to the presence of the double-logarithms. Indeed the eigenvalue
relation for the Bethe–Salpeter equation can be written near γ = 0 and J � j = −r + ω in the
form

1 =
4â

γ(ω − γ)
+ O

(
â2

)
.

Because the first contribution in the right-hand side contains additional singularities in com-
parison with the pole 1/ω in the physical case of the positive |n|, we should subtract from the
correction O

(
â2

)
the terms appeared in its first iteration:

(4â)2
1

γ2(ω − γ)2
� (4â)2

(
1

γ2ω2
+

2
γω3

)
.
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This subtraction leads to the final result for even r, which is in an agreement with the fact
that the double-logarithms in the universal AD γ(j) exist at even negative j. For the odd r the
divergency â2/(γω3) is absent in accordance with the absence in γ(j) of the DL terms ∼ â2/ω3

at odd negative j. For a more accurate comparison of the singularities of the BFKL and DGLAP
equations in two-loop approximation one needs to calculate in the BFKL kernel non-singular
terms at j → −r.

5 Conclusion

Above we reviewed the LLA and NLL results for the eigenvalue of the kernels of the BFKL and
DGLAP equations in the N = 4 supersymmetric gauge theory and constructed the operators
with a multiplicative renormalization [6]. These AD can be obtained from the universal AD
γ(j) by a shift of its argument j → j + k. The NLO corrections to the AD matrix were found
with the use of the plausible arguments [6] and by the direct methods [19].

Note that recently the LLA AD in this theory for large αsNc were constructed in ref. [22] in
the limit j → ∞ from the superstring model with the use of the Maldacena correspondence [23].
Also in N = 4 SUSY at large αsNc the Pomeron coincides with the graviton [24]. It will be
interesting to obtain these results directly from the DGLAP and BFKL equation. Already in
the perturbation theory as it was demonstrated above, the BFKL dynamics has remarkable pro-
perties: analyticity in the conformal spin |n|, Möbius invariance, holomorphic (and Hermitian)
separability and integrability in a generalized LLA. On the other hand, for the DGLAP dynamics
the AD for all twist-2 operators are proportional in LLA to the function Ψ(1)− Ψ(j − 1) up to
an integer shift of its arguments, which corresponds to the eigenvalue of a pair Hamiltonian in
the integrable Heisenberg spin model [4, 25]. The investigation of the N = 4 supersymmetric
model should be continued in the perturbation theory and for large αsNc because it is helpful
for understanding of QCD.
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