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Dept. of Physics, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
E-mail: korcuk@gantep.edu.tr, koc@gantep.edu.tr

We present a method of obtaining the quasi-exact solution of the Jahn–Teller systems in the
framework of osp(2, 2) superalgebra. The Hamiltonian have been solved in the Bargmann–
Fock space by obtaining an expression as linear and bilinear combinations of the generators
of osp(2, 2). In particular, we have discussed quasi-exact solvability of E × ε Jahn–Teller
Hamiltonian.

1 Introduction

The Jahn–Teller (JT) distortion problem is an old one, dating back over sixty years [1]. Yet,
even today, new contributions to this problem are being made [2]. They appear, however, not to
have been fully exploited in the analysis of JT problem. The E⊗ ε JT problem is a system with
doubly degenerate electronic state and doubly degenerate JT active vibrational state. The JT
effect describes the interaction of degenerate electronic states through non-totally symmetric,
usually non-degenerate, nuclear modes. This effect plays an important role in explaining the
structure and dynamics of the solids and molecules in degenerate electronic states.

The studies of the JT effect led Judd to discover a class of exact isolated solutions of the
model [2]. The complete description of these solutions have been given by Reik et al [3]. They
observed that the isolated solutions could be obtained by using Neumann series of expansions
of the eigenvectors in the Bargmann–Fock space described by the boson operators. The same
problem has been treated in [4].

On the other hand, the concept of quasi-exactly solvable (QES) systems discovered [5, 7–9]
in the 1980’s, has received much attention in recent years, both from the viewpoint of physical
applications and their inner mathematical beauty. The classification of the 2 × 2 matrix diffe-
rential equations in one real variable possessing polynomial solution have been described [6,10].
The relevant algebraic structure of the E ⊗ ε JT system is the graded algebra osp(2, 2) and in
this poster, we present a quasi-exact solution of the E ⊗ ε JT Hamiltonian.

2 Symmetry properties of the E × ε Jahn–Teller system

In this section a group theoretical treatment of JT distortion, in general case of two-fold degene-
rate states of various groups is provided. The JT interaction matrices and surface energies have
been obtained by using symmetry properties of the system [11]. Let us start by describing the
Hamiltonian that generates D� ⊗D� surface, where D� denotes the irreducible representation.
The standard Hamiltonian may be written in the form

H = H0 +HJT, (1)

where H0 describes free (uncoupled) electron/holes and their vibrational states and HJT is the
Jahn–Teller interaction Hamiltonian. It is known that the Hamiltonian of the JT coupling is
invariant under the rotational operations of the SO(3) group. The totally symmetric part of
direct product of an irreducible representations of a finite group, which describes the properties
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of the JT system, can be expressed in the form of[
D� ⊗D�

]
= D�1 ⊕D�2 ⊕ · · · ⊕D�n , (2)

where � is the angular momentum quantum number. Decomposition of
[
D� ⊗D�

]
implies that

the JT Hamiltonian can be written in the following way

HJT = H�1 +H�2 + · · · +H�n , (3)

where H�i is the JT Hamiltonian and it is invariant under the symmetry operations of the
corresponding finite group, for the (2�+ 1)-dimensional representation. As an example consider
an icosahedral symmetric system. The symmetric part of the Hg interaction is given by

[Hg ⊗Hg] = Ag ⊕Hg ⊕ (Hg ⊕Gg), (4)

where Ag, Hg, and Gg are the irreducible representations of the icosahedral group Ih. Since Ih
is a subgroup of O(3) decomposition of the coupling of the � = 2 state can be written as

[
D2 ⊗D2

]
= D0 ⊕D2 ⊕D4 (5)

and its Hamiltonian is given by

HJT = H0 +H2 +H4. (6)

The HamiltoniansH i must be separately invariant under the symmetry group Ih. The symmetric
part contains the totally symmetric representation H0 = Ag can exactly be solved. Before going
further we list the decomposition of the symmetric products of the [E ⊗ E] JT interaction and
corresponding symmetry groups

Oh : [E ⊗ E] = A1g ⊕ E, Th : [E ⊗ E] = Ag ⊕ E,

D2p : [E ⊗ E] = A1 ⊕ E, C2p : [E ⊗ E] = A1 ⊕ E,

where Oh, Th, D2p and C2p denotes octahedral, tetrahedral, dihedral and cyclic groups, respec-
tively. In the following section we discuss the construction of the E ⊗ ε JT Hamiltonian.

3 The E ⊗ ε Jahn–Teller Hamiltonian

The well-known form of the E ⊗ ε JT Hamiltonian describing a two-level fermionic subsystem
coupled to two boson modes has been given by Reik [3]

H = a+
1 a1 + a+

2 a2 + 1 +
(

1
2 + 2µ

)
σ0 + 2κ[(a1 + a+

2 )σ+ + (a+
1 + a2)σ−], (7)

where 1
2 + 2µ is the level separation, κ is the coupling strength. The Pauli matrices σ±,0 are

given by

σ+ =
[

0 1
0 0

]
, σ− =

[
0 0
1 0

]
, σ0 =

[
1 0
0 −1

]
. (8)

The annihilation and creation operators, ai and a+
i satisfy the usual commutation relations

[a+
i , a

+
j ] = [ai, aj ] = 0, [ai, a

+
j ] = δij . (9)

The number operator of the Hamiltonian (7), J1, represents the angular momentum of the
system and is given by

J1 = a+
1 a1 − a+

2 a2 + 1
2σ0. (10)
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Note that J1 commutes with H and the eigenvalue problem of the angular momentum part can
be easily solved and it reads

J1 |ψ〉j+ 1
2

=
(
j + 1

2

) |ψ〉j+ 1
2
, j = 0, 1, 2, . . . (11)

with the eigenfunctions

|ψ〉j+ 1
2

= (a+
1 )jφ1(a+

1 a
+
2 ) |0〉 |↑〉 + (a+

1 )j+1φ2(a+
1 a

+
2 ) |0〉 |↓〉 , (12)

where |0〉 is the vacuum state for both bosons. Here |↑〉 and |↓〉 are the eigenstates of the σ0,
φ1 and φ2 are arbitrary functions of a+

1 a
+
2 . Because the operators H and J1 commute, the

eigenfunctions (12) are also the eigenfunctions of the Hamiltonian (7). Therefore we can write
the eigenvalue equation,

H |ψ〉j+ 1
2

= E |ψ〉j+ 1
2
, E = 2ε+ j + 3

2 . (13)

The Hamiltonian H can be expressed in the Bargmann–Fock space by using the realizations of
the bosonic operators

a+
i = zi, ai =

d

dzi
, i = 1, 2. (14)

In this formulation, the Hamiltonian H consists of two independent sets of first-order linear
differential equations. Substituting (12) and (14) into (7) and defining ξ = z1z2 one can obtain
the following two linear differential equations satisfied by the functions φ1 and φ2:[

ξ
d

dξ
− (ε− µ)

]
φ1 + κ

[
ξ
d

dξ
+ (ξ + j + 1)

]
φ2 = 0,

κ

[
d

dξ
+ 1

]
φ1 +

[
ξ
d

dξ
− (ε+ µ)

]
φ2 = 0. (15)

These coupled differential equations represent the Schrödinger equation of the E⊗ε JT system
in Bargmann’s Hilbert space and its isolated exact solution have been obtained by Reik [3]. In
this paper we follow a different strategy to solve the Hamiltonian (7) and we show that the
Hamiltonian possesses osp(2, 2) symmetry.

4 Two-boson one fermion osp(2, 2) superalgebra

In order to construct osp(2, 2) superalgebra let us start by introducing three generators of the
su(1, 1) algebra,

J+ = a+
1 a

+
2 , J− = a2a1, J0 = 1

2

(
a+

1 a1 + a+
2 a2 + 1

)
. (16)

These are the Schwinger representation of su(1, 1) algebra and its number operator is given by,

N = a+
1 a1 − a+

2 a2 (17)

which commutes with the su(1, 1) generators. The superalgebra osp(2, 2) might be constructed
by extending su(1, 1) algebra with the fermionic generators. These are given by

V+ = f+a+
2 , V− = f+a1, W+ = fa+

1 , W− = fa2, (18)

where f+ and f are fermions and they satisfy the anticommutation relation
{
f, f+

}
= 1, f = σ−, f+ = σ+, ff+ − f+f = σ0. (19)
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The superalgebra osp(2, 2) can be constructed with the generators (16) and (18), as it is discussed
in [12]. The total number operator J of the system and it is given by

J = 1
2N + 1

2

(
f+f − ff+

)
. (20)

The generators of the osp(2, 2) superalgebra satisfy the following commutation and anticommu-
tation relations:

[J+, J−] = −2J0, [J0, J±] = ±J±, [J, J±] = 0, [J, J0] = 0,
[J0, V±] = ±1

2V±, [J0,W±] = ±1
2W±, [J±, V∓] = V±, [J±,W∓] = W±,

[J,W±] = −1
2W±, [J, V±] = 1

2V±, [J±, V±] = 0, [J±,W±] = 0,
{V±,W±} = J±, {V±,W∓} = ±J0 − J, {V±, V±} = {V±, V∓} = 0,
{W±,W±} = {W±,W∓} = 0. (21)

The Hamiltonian of a physical system, with an underlying osp(2, 2) symmetry, has been
expressed in terms of the operators of the corresponding algebra.

5 Transformation of the operators

Transformation of the fermion-boson representations of the osp(2, 2) algebra and its connection
with the QES systems can be done by introducing the following similarity transformation induced
by the metrics

S = (a+
2 )−a+

1 a1−σ+σ− , T = (a2)a+
1 a1+σ+σ− . (22)

These transformations lead to the single-variable differential realizations of the osp(2, 2) super-
algebra. With the operator S, the generators of osp(2, 2) takes the form:

J ′
+ = SJ+S

−1 = a+
1 , J ′

− = SJ−S−1 = a1(a+
2 a2 + a+

1 a1 + σ+σ−),

J ′
0 = SJ0S

−1 = 1
2

(
2a+

1 a1 + a+
2 a2 + 1 + σ+σ−

)
, J ′ = SJS−1 = 1

2(−a+
2 a2 − σ−σ+),

V ′
+ = SV+S

−1 = σ+, V ′
− = SV−S−1 = σ+a1,

W ′
+ = SW+S

−1 = σ−a+
1 , W ′

− = SW−S−1 = σ−(a+
2 a2 + a+

1 a1 + σ+σ−). (23)

The representations (23) of osp(2, 2) can be characterized by a fixed number a+
2 a2 = −j − 1.

Here j takes integer or half-integer values. Therefore the generators of the osp(2, 2) algebra
can be expressed as single-variable differential equation in the Bargmann–Fock space and two-
component polynomials of degree j and j + 1 form a basis function for the generators of the
osp(2, 2) algebra,

Pn+1,n(x) =
(
x0, x1, . . . , xn+1

x0, x1, . . . , xn

)
. (24)

The general QES operator can be obtained by linear and bilinear combinations of the genera-
tors of the osp(2, 2) superalgebra. Action of the QES operator on the basis function (24) gives us
a recurrence relation, therefore, the wavefunction is itself the generating function of the energy
polynomials. Under the transformation T the generators of the osp(2, 2) algebra take the form

J ′
+ = TJ+T

−1 = a+
1 (a1a1 + a+

2 a2 + 1 + σ+σ−), J ′
− = TJ−T−1 = a1,

J ′
0 = TJ0T

−1 = 1
2

(
2a+

1 a1 + a+
2 a2 + 1 + σ+σ−

)
J ′ = TJT−1 = 1

2

(−a+
2 a2 − σ−σ+

)
,

V ′
+ = TV+T

−1 = σ+(a+
2 a2 + a+

1 a1 + 1 + σ+σ−), W ′
+ = TW+T

−1 = σ−a+
1 ,

V ′
− = TV−T−1 = σ+a1, W ′

− = TW−T−1 = σ−. (25)

This realization can also be characterized by a+
2 a2 = −j − 1. The basis function of the

realization is given by (24).
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6 Solvability of the E ⊗ ε Jahn–Teller Hamiltonian

It will be shown that our approach is relatively very simple when compared to previous ap-
proaches. The Hamiltonian (7) can be expressed in terms of the generators of the osp(2, 2):

H = 2J0 +
(

1
2 + 2µ

)
(2J −N) + 2κ [V+ + V− +W+ +W−] . (26)

The general trend to solve a differential equation quasi-exactly is to express the differential
equation in terms of the generators of a given Lie algebra having a finite dimensional invariant
subspace and to use the algebraic operations. In the Bargmann–Fock space the Hamiltonian
has two different realizations, under the transformations S and T . The first transformation by
S leads to the following one-variable differential realization:

H1 =
(

2x
d

dx
− j + σ+σ−

)
− (

1
2 + 2µ

)
σ−σ+

+ 2κ
[
σ+

(
1 +

d

dx

)
+ σ−

(
x+ x

d

dx
− j − 1 + σ+σ−

)]
(27)

and the second realization can be obtained by transforming the Hamiltonian by T :

H2 =
(

2x
d

dx
− j + σ+σ−

)
− (

1
2 + 2µ

)
σ−σ+

+ 2κ
[
σ+

(
d

dx
+ x

d

dx
− j + σ+σ−

)
+ σ−(1 + x)

]
. (28)

The eigenvalue problem can be expressed as

Hϕ(x) = Eϕ(x), ϕ(x) =
[
vn(x)
ωm(x)

]
, (29)

where vn(x) and ωm(x) are polynomials of degree n and m respectively. The action of the H1

on the basis function ϕ(x) gives the following recurrence relation:

(2n− j + 1 − E)vn + 2κ(ωm +mωm−1) = 0,(
2m− j − 1

2 − 2µ− E
)
ωm + 2κ(vn+1 + (n− j)vn) = 0. (30)

Similarly when the Hamiltonian H2 acts on the basis function we obtain the recurrence relation:

(2n− j + 1 − E)vn + 2κ(mωm−1 + (m− j)ωm) = 0,(
2m− j − 1

2 − 2µ− E
)
ωm + 2κ(vn + vn+1) = 0. (31)

It is requiring that the determinant of these sets must be equal to zero giving the compatibility
conditions which establish the QES system. According to the (24) one can construct a QES
system if n = m+ 1. Here m takes the values m = 0, 1

2 , 1, . . . , j. If Ej is a root of the recurrence
relations (30) or (31) then the eigenfunction truncates for a certain values of j, and Ej belong
to the spectrum of the Hamiltonian. The initial conditions of the recurrence relation is given by

vm = 0 for j < m < 1 and ωm = 0 for j < m < 0. (32)

with these initial conditions solution of (30) gives us the following relation for the energy when
j = 0:

E = 1
4

(
5 − 4µ±

√
64κ2 + (7 + 4µ)2

)
(33)

and for j = 1/2:

E = 1
4

(
3 − 4µ±

√
32κ2 + (7 + 4µ)2

)
, E = 1

4

(
7 − 4µ±

√
64κ2 + (7 + 4µ)2

)
. (34)

The same energy eigenvalues can be obtained by using the recurrence relation (31). In this case
eigenvalues shifted E → E − 1 and j takes negative integer and half-integer values.
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7 Conclusion

It is well known that the exact solutions have a direct practical importance. We have presented
the quasi-exact solution of the generalized E⊗ε JT system. Our paper gives a unified treatment
of some earlier works. The method given here can be extended to other JT or multi-dimensional
atomic systems. The basic features of our approach is to construct osp(2, 2) invariant subspaces.
Furthermore, we have presented two different boson-fermion representations and two classes of
one variable differential realizations of osp(2, 2) algebra. In particular the solution of E ⊗ ε JT
system has been constructed.

The suggested approach can be generalized in various directions. Invariant subspaces of the
multi-boson and multi-fermion systems can be obtained by extending the method given in this
paper. The method given here can be extended to other JT or multi dimensional atomic systems.
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