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In the present paper the classification of equilibrium states of condensed media with spon-
taneously broken symmetry is carried out. The used approach is based on concept of the
quasiaverages. The admissible properties of equilibrium state symmetry of a quantum fluid
and relevant structures of an order parameter are found from requirements of the residual
and spatial symmetry at nonzero values of an order parameter. The superfluid in a state
with triplet pairing, the superfluid nuclear matter in a state of d-pairing, liquid crystal states
of matter are considered in this paper as the examples. Admissible conditions of the spatial
symmetry and the general structure of the corresponding generator are found.

1 Introduction

The classification of equilibrium states of condensed media with spontaneously broken symmet-
ry based on the phenomenological Ginzburg–Landau approach requires the exact free energy
dependence on the order parameter function and essentially depends on the type of the model
we consider. The other group-theory approach is based on the conception of residual sym-
metry of the degenerate state of equilibrium as the subgroup of normal phase symmetry. The
corresponding transformation properties of the order parameter in Hamiltonian symmetry trans-
formations are essential in this approach. This consideration is free from any model assumption
about the form of free energy. The classification of homogenous states in terms of both men-
tioned approaches was carried out in particular for the superfluid 3He [1–3], and for d-pairing
in superfluid quantum liquid [4, 5]. In the present paper the general microscopic approach to
the classification of equilibrium states of condensed media with spontaneously broken symmetry
based on the conception of quasiaverages is suggested. The permissible properties of symmetry
of quantum liquid equilibrium state and the corresponding structures of order parameter are
found from the conditions of residual symmetry at the nonzero values of order parameter. As
the examples of degenerate condensed media with spontaneously broken symmetry we consider
the superfluid liquids in state with triple type of pairing (3He), superfluid nuclear matter in
d-pairing state and liquid crystals.

2 Symmetry properties of the normal equilibrium state

The theory of many-particle systems that describes the equilibriums of a normal Fermi liquid is
based on the statistical Gibbs operator

ŵ = exp (Ω − Yaγ̂a) , (1)

here γ̂a ≡
(
Ĥ, P̂k, N̂ , Ŝα

)
are additive integrals of motion (a ≡ 0, k, 4, α): Ĥ is the Hamiltonian,

P̂ is the momentum operator, N̂ is the particle number operator, Ŝα is the spin operator,
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Thermodynamic potential Ω = V ω(Y ) is defined by the normalization condition Sp ŵ = 1. The
set of thermodynamic forces Ya includes the temperature Y −1

0 ≡ T , the velocity Y −1
k ≡ vk, the

chemical potential −Y4/Y0 ≡ µk, and the effective magnetic field −Yα/Y0 ≡ hα.
The additive integrals of motion entering the Gibbs distribution result in a certain symmetry

of the equilibrium.The symmetry properties of equilibrium statistical operator (1) have the form[
ŵ, P̂k

]
= 0,

[
ŵ, Ĥ]

= 0,
[
ŵ, N̂

]
= 0,

[
ŵ, Σ̂α

]
= 0,

[
ŵ, L̂k

]
= 0 (2)

and reflect the space-time translation invariance and the phase invariance. The requirement
for the symmetry under rotations in the spin and configuration spaces implies neglecting the
weak dipole and spin-orbit interactions. Here, Σ̂α and L̂i are the generalized spin and orbital
momentum operators

Σ̂α ≡ Ŝα + ŜY
α , ŜY

α ≡ −iεαβγYβ
∂

∂Yγ
, L̂i ≡ L̂i + L̂Y

i , L̂Y
i ≡ −iεiklYk

∂

∂Yl
, (3)

acting on the Hilbert space and on the thermodynamic parameter space. The action of the
differential operators on the vectors Yi(Yα) is defined by i

[L̂Y
i , Yj

]
= εikjYk, i

[
ŜY

α , Yρ

]
= εαβρYβ .

The corresponding means of commutators involving the orbital momentum operators have the
form Sp

[
ŵ, L̂i + LY

i

]
b̂(x) = Sp ŵ

[L̂i, b̂(x)
]
+ LY

i Sp ŵb̂(x). According to definition (3), the ope-
rators Σ̂α and L̂i satisfy the relations

i
[
L̂i, L̂k

]
= −εiklL̂l, i

[
Σ̂α, Σ̂β

]
= −εαβγΣ̂γ .

3 Equilibrium degeneracy and quasiaverages

The theoretical foundation of the statistical physics that describes equilibriums of condensed
matter with a spontaneously broken symmetry is Bogoliubov’s concept of quasiaverages [6].
A constructive point of this concept is inserting an infinitely small source νF̂ into the equilibrium
statistical operator, that reduces the symmetry of the statistical equilibrium in comparison with
the symmetry of the Hamiltonian and allows generalizing the Gibbs distribution to condensed
matter under spontaneous symmetry-breaking conditions. The quasiaverage value of a quanti-
ty a(x) in a statistical equilibrium with a broken symmetry is defined by

〈â(x)〉 ≡ lim
ν→0

lim
V →∞

Sp ŵν â (x) , ŵν ≡ exp
(
Ων − Yaγ̂a − νF̂

)
. (4)

The operator F̂ has the symmetry of the condensed-matter phase under study and removes
the degeneracy of the equilibrium. In accordance with the concept of quasiaverages, we choose
the source F̂ in the form of a linear functional of an order parameter ∆̂a (x)

F̂ =
∫
d3x

(
fa(x, t)∆̂a(x) + h.c.

)
,

where fa(x, t) is some function of coordinates and time that is conjugate to the order parameter
and defines its equilibrium value ∆a(x, t) = 〈∆̂a(x)〉 in the sense of quasiaverages (4). The
structure of the function fa(x, t) is defined by the symmetry properties of the phase under study.
The last circumstance gives a possibility of introducing additional thermodynamic parameters
into the Gibbs distribution in the framework of the microscopic theory [7].

A description of condensed matter with a spontaneously broken symmetry essentially rests
on the notion of the order parameter. In the language of the secondary quantization, the order-
parameter operators ∆̂a(x) are built from the field creation and annihilation operators. We form
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late the commutation properties of the order-parameter operators. The translation invariance
condition is

i
[P̂k, ∆̂a(x)

]
= −∇k∆̂a(x). (5)

The generator of the phase transformation group is the particle number operator N̂ . The
relation[

N̂ , ∆̂a(x)
]

= −ga∆̂a(x) (6)

holds for the order-parameter operator ∆̂a(x). The constants ga depend on the tensor dimension
of the order-parameter operator.

Under the transformations related to the internal-symmetry group with the generators Ŝα

(α = x, y, z) the operators ∆̂a(x) transform according to the representations of this group, which
yields the equality

i
[
Ŝα, ∆̂a(x)

]
= −gαab∆̂b(x), (7)

or, in compact notation,

i
[
Ŝα, ∆̂(x)

]
= −ĝα∆̂(x),

where (ĝα)ab ≡ gαab– are some constants. Because i
[
Ŝα, Ŝβ

]
= −εαβγŜγ , from formula (7) and

the Jacobi identity for the operators Ŝα and ∆̂ (x), we have[
ĝα, ĝβ

]
= −εαβγ ĝγ . (8)

Under the transformations related to the spatial-rotation group with the generators Li (i =
1, 2, 3), the order parameter operators ∆̂a(x) at the point x = 0 transform according to the
representations of this group. The equality i

[L̂i, ∆̂a(0)
]

= −giab∆̂b(0) therefore holds, and
noting that

[L̂i, L̂j

]
= iεijkL̂k, we obtain a relation similar to (8)[

ĝi, ĝj

]
= −εijkĝk.

Because ∆̂a(x) = e−iP̂x∆̂a(0)eiP̂x, e−iP̂xL̂ie
iP̂x = L̂i − εijkxjP̂k, by virtue of (5) we have

i
[L̂i, ∆̂a(x)

]
= −giab∆̂b(x) − εijkxk∇j∆̂a

(
x
)
. (9)

It is known from the phenomenological theory that, in general, an adequate description of
the thermodynamics of non-equilibrium processes in condensed matter with a broken symmetry
requires introducing new thermodynamic parameters into the theory; these are not related to
conservation laws but are due to the physical nature of the thermodynamic phase. In the case
of normal condensed matter, the thermodynamic parameters are defined by only the densities of
the additive integrals of motion. We show how the symmetry properties are formulated for the
equilibriums of degenerate condensed matter and how the additional thermodynamic parameters
are introduced based on this. We consider the translation-invariant subgroups of the residual
symmetry H of the total group G. The translation invariance implies that the equilibrium
statistical operator satisfies the symmetry relation[

ŵ, P̂k

]
= 0. (10)

We analyze the translation-invariant subgroups of the residual symmetry for the equilibriums
starting from the relation[

ŵ, T̂
]

= 0, (11)
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where the generator T of the residual symmetry (a generator of the subgroup H) is a linear
combination of the integrals of motion (see for comparison (2))

T̂ ≡ aiL̂i + bαΣ̂α + cN̂ ≡ T̂ (ξ) (12)

with some real parameters (ai, bα, c ≡ ξ). The unitary transformations U(ξ) = exp[iT̂ (ξ)] form
the continuous subgroup of the residual symmetry U(ξ)U(ξ′) = U(ξ′′(ξ, ξ′)) for the equilibrium
state. Using the equalities

iSp
[
ŵ, T̂

]
∆̂a(x) = 0, iSp

[
ŵ, P̂k

]
∆̂a(x) = 0,

and taking algebraic relations (5)–(7), (9) and definition (12) into account, we obtain the equa-
tions

ai

(
giab∆b + εiklYk

∂∆a

∂Yl

)
+ bα

(
gαab∆b + εαβγYβ

∂∆a

∂Yγ

)
+ iga∆a = 0, ∇k∆a = 0.

which establish certain relations between the parameters ξ. For simplicity, we consider the case
where Yα = Yk = 0. In this case, we have

Tab∆b = 0, Tab ≡ aigiab + bαgαab + igaδab. (13)

The requirement that set of linear equations (13) has a nontrivial solution ∆a �= 0 leads to the
equality det |Tab| = 0, which imposes restrictions on the admissible values of the parameters ξ
of the residual symmetry generator.

4 Translation-invariant equilibrium states of the condensed
media with spontaneously broken symmetry

A. Translation-invariant equilibrium states of the superfluid 3He. For the order parameter ope-
rator ∆̂αk(x) it is convenient to choose [7]

∆̂αk (x) ≡ ψ̂ (x)σ2σα∇kψ̂ (x) −∇kψ̂ (x)σ2σαψ̂ (x) .

Here, σα are Pauli matrices. The matrices (σ2σα)µν = (σ2σα)νµ are symmetric with respect to
indices µ and ν. We see that in accordance with this definition and the canonical commutation
relations for Fermi operators, the equalities are valid:

i
[
Ŝα, ∆̂βi(x)

]
= −εαβγ∆̂γi(x),

[
N̂ , ∆̂βi(x)

]
= −2∆̂βi(x),

i
[P̂k, ∆̂αi(x)

]
= −∇k∆̂αi(x), i

[L̂k, ∆̂αi(x)
]

= −εkjlxj∇l∆̂αi(x) − εkil∆̂αl(x). (14)

By virtue of algebra (14) and relations (13), we obtain the equality defining the equilibrium
structure of the order parameter:

akεkil∆βl + bαεαβγ∆γi + 2ic∆βi = 0.

This system of equations has many anisotropic solutions that are present in Table 1. Let us
consider the state corresponding to the isotropic superfluid phase. We introduce the orthogonal
rotation matrix that describes the change of the orientation of the spatial coordinate system
with respect to the spin S = 1 by the equality bα = aiRiα. Taking (12) into account, we
obtain ai

[
ŵ, L̂i +RiαŜα

]
= 0. The isotropy condition implies the validity of the last relation

for arbitrary directions of the vector �a. The symmetry property of the states therefore has the
form [

ŵ, L̂i +RiαŜα

]
= 0.
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This state describes the B phase of the superfluid 3He. For the states with this symmetry, the
mean of the order parameter is

∆αk = ∆Rkα.

The resulting classification of the residual symmetry properties and the corresponding order
parameter values in the equilibrium of 3He for the translation-invariant case is presented in
Table 1. We assume that the projection of the Cooper-pair orbital momentum onto the �l
direction is equal to ml and the projection of the Cooper-pair spin onto the �d direction is equal
to ms.

Table 1.

Residual symmetry generator ml ms Order parameter Phase
L̂i +RiαŜα − − ∆Rαi B

±1 0 ∆dα (mk ∓ ink) A

�l �̂L − ml

2 N̂
0 ±1 ∆ (eα ∓ ifα) lk β

±1 ±1 ∆ (eα ∓ ifα) (mk ∓ ink) A1

�d�̂S − ms

2 N̂
0 0 ∆dαlk Polar

0,±1 0 dα (Amk +Bnk + Clk)
�d�̂S − 2ml |ms|�l �̂L − 1

2msN̂ ±1 ±1 A (mk ∓ ink) (eα ∓ ifα)
+Bdα (mk ∓ ink) A1 +A

0 ±1 (eα ∓ ifα) (Amk +Bnk + Clk) A2

0 0,±1 (Aeα +Bfα + Cdα) lk
�l �̂L − 2ms |ml| �d�̂S − 1

2mlN̂ ±1 ±1 A (mk ∓ ink) (eα ∓ ifα) +Blk (eα ∓ ifα) A1 + β
± 0 (Aeα +Bfα + Cdα) (mk ∓ ink) B2

0,± 0,∓ eα (Amk +Bnk) + fα (−Bmk +Ank)
+Cdαlk ζ

0 ∓
�l �̂L + �d�̂S − 1

2 (ml +ms)N̂ Alk (eα ∓ ifα) +Bdα (mk ∓ ink) ε
± 0
± ± ∆(eα ∓ ifα) (mk ∓ ink) A1

B. The superfluid nuclear matter in a state of d-pairing. We define the order parameter
operator of d-pairing in the terms of the operators of creation and annihilation of Fermi-particle:

∆̂ik(x) ≡ ∇iψ̂(x)σ2∇kψ̂(x) + ∇kψ̂(x)σ2∇iψ̂(x) − 2
3
δik∇jψ̂(x)σ2∇jψ̂(x), (15)

where σ2 is the Pauli matrix.
Using this definitions we obtain the operator relations for the operators of number of partic-

les N̂ , momentum P̂k, spin Ŝα and orbital momentum L̂k[
N̂ , ∆̂ik(x)

]
= −2∆̂ik(x),

[
Ŝα, ∆̂ik(x)

]
= 0, i

[P̂l, ∆̂ik(x)
]

= −∇l∆̂ik(x),

i
[L̂l, ∆̂ik(x)

]
= −εlij∆̂jk(x) − εlkj∆̂ji(x) − εlkjxk∇j∆̂ik(x) (16)

The mean values of the order parameter ∆ik(x, ρ̂) = Sp ρ̂∆̂ik(x) , (ρ̂ is the arbitrary statistical
operator) have properties ∆ik(x, ρ̂) = ∆ki(x, ρ̂), ∆ii(x, ρ̂) = 0.

If we use the general approach developed in Section 3 we get the relation for residual symmetry
operator (12)[

ŵ,
ai

a
L̂i − M

2
N̂

]
= 0. (17)
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Here M is quantum number taking the values 0, ±1, ±2. Let us decompose the vector �a on the
indicated coordinate �a/a = α�n + β �m + γ�l. The vectors �m, �n, �l are the axes of an anisotropy,
representative unitary and mutually perpendicular vectors and the quantities α, β, γ obey the
equality α2 + β2 + γ2 = 1.

From this relation it is easy to obtain the expression for the order parameter, according
to formalism developed in Section 3 and taking into account (15), (16). To obtain the final
expression for order parameter we define mean value according to the paper [8]

∆ ≡ ki∆ijkj , �k ≡ �m sin θ sinϕ+ �n cos θ +�l sin θ cosϕ.

For M = 0 in according to (13), (17) we obtain

∆(0)
1 = iE

{
(βky + αkz + γkx)2 − 1

3

}
, ∆(0)

2 = iC̃

{
(βky + αkz)2 − 1

3

}
,

∆(0)
3 = (A+ iC)

(
k2

z − 1/3
)
, E2 = (3/2), C̃2 = (3/2), A2 + C2 = 3/2.

These solutions correspond to the “real” state [8].
The solution for M = ±1 in according to (15), (17) gives the equality

∆(1) = A(kx + ky)
(±i√2kz + ky − kx

)
, A2 = 1/4.

At last, in a case (M = ±2) we obtain

∆(2) = A(kx ± iky)2, A2 = 1/4.

This solution coincides with “axial” state of work [8].
C. Liquid crystal states of matter. Let us consider the translation invariant states of liquid

crystal equilibrium and define their possible equilibrium structures of order parameter. We
choose the order parameter in the form

Q̂uv(x) ≡ ∇uψ̂
+(x)∇vψ̂(x) + ∇vψ

+(x)∇uψ̂(x) − 2
3
δuv∇jψ̂

+(x)∇jψ̂(x). (18)

According to definition (1) of operators for number of particles, momentum operator and orbital
momentum, we obtain the commutative relations:[

N̂ , Q̂uv(x)
]

= 0, i
[P̂k, Q̂uv(x)

]
= −∇kQ̂uv(x),

i
[L̂i, Q̂uv(x)

]
= −εiujQ̂jv(x) − εivjQ̂ju(x) − εiklxk∇lQ̂uv(x). (19)

In case of uniaxial nematic we perform the analysis of the subgroups of unbroken symmetry
states in the rest frame reference on the assumption of (11). As the phase invariance in liquid
crystal is not broken, the expression for residual generator for homogeneous state has the form

T̂ ≡ aiL̂i,

here ai are the real parameters. According to (18), (19), (11) we have

Qik = Q

(
nink − 1

3
δik

)
.

In the case of biaxial nematic the residual symmetry generator has the form

T̂
(
�a, �m,�n

) ≡ aiL̂i

(
�m,�n

)
. (20)
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The generalized orbital momentum operator is defined by equality

L̂i

(
�m,�n

) ≡ L̂i + L̂�m
i + L̂n̂

i , L̂�m
i ≡ −iεiklmk

∂

∂ml
, L̂�n

i ≡ −iεiklnk
∂

∂nl
. (21)

The vectors �n and �m are unitary and mutually perpendicular vectors. Using the condition of
symmetry (11) with the generator in the form (20), (21) we obtain the following order parameter

Qik = Q1

(
nink − 1

3
δik

)
+Q2

(
mimk − 1

3
δik

)
.

The description of the equilibrium state of degenerate condensed media with rather compli-
cated order parameter is considered on the basis of microscopic approach. Representation of
residual symmetry of the equilibrium state in combination with the conception of quasiaverages
allows to suggest an alternative to the Ginzburg–Landau method of classification of possible
condensed media phase states. The present approach can be generalized for description of the
states without translation invariance. It gives the possibility of consideration of the periodical
spatial structures with discrete or continuous residual symmetry.
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