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Infinitesimal Affinely-Rigid Bodies in Riemann Spaces
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In general Riemannian spaces, as rule, there are no isometries, except the identity trans-
formation. For that reason one cannot consider extended rigid bodies in the usual sense.
But one can consider approximately rigid motion of small bodies. More rigorously, they are
material points with attached orthonormal bases. These bases describe internal degrees of
freedom and provide the symbolic description of relative motion degrees of freedom after
the limit transition, when the body diameter tend to zero. Similarly, there is no extended
affinely-rigid body concept in a general Riemann space. Affine degrees of freedom may be
considered merely as internal ones, represented by a general linear basis attached at the
material point.

1 Introduction

We shall consider some models of an infinitesimal affinely- or metrically-rigid body. Because we
cannot describe extended bodies, we use material points with attached linear bases. We have
the following generalized coordinates:

1. The spatial coordinates xi in a manifold M , dim M = n.

2. The attached basis components ei
A, where A = 1, . . . , n are co-moving indices (referring

to the material spaces), and i = 1, . . . , n are spatial indices. In the metrically-rigid case
eA are orthonormal: gije

i
Aej

B = δAB.

EA denotes some field of frames fixed on M once for all. In affinely-rigid case this field is not
indispensable, but description based on it is more convenient and “natural”. At any time in-
stant t, the vectors eA(t) ∈ Tx(t) M of the co-moving frame are given by eA(t) = EB(x(t))UB

A(t).
In the metrically-rigid case, for any t, the matrix U is orthogonal; in the affine case it is gene-
ral. The choice of E strictly depends on geometry of M . In this article we discuss two cases.
First is when our infinitesimal affinelly-rigid bodies will move on the sphere. The second case is
pseudo-spherical, explicitly:

in the first case : E(r) =
∂

∂r
, E(ϕ) =

1
R sin

(
r
R

) ∂

∂ϕ
, Er

(ϕ) = Eϕ
(r) = 0,

in the second case : E(r) =
∂

∂r
, E(ϕ) =

1
R sh

(
r
R

) ∂

∂ϕ
, Er

(ϕ) = Eϕ
(r) = 0.

Affine velocity in the co-moving representation is given by:

Dei
B

Dt
:= ei

AΩA
B. (1)

With the help of the standard Kronecker delta metric we can trivially shift the co-moving
indices, e.g. ΩAB := δACΩC

B. The above quantity is skew-symmetric, i.e. ΩAB = −ΩBA, when
the motion is metrically-rigid (gyroscopic). The spatial components of affine velocity are given
by: Ωi

j = ei
AΩA

BeB
j . In the metrically-rigid motion we can shift indices with the help of gij :

Ωij = gikΩk
j = −Ωji.
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2 Hamiltonian description

The previously described models of kinetic energy [2, 5–8] were invariant under the g-isometry
groups acting in tangent spaces and under the orthogonal group acting in the micromaterial
space R

n. However, in spite of the affine symmetry of degrees of freedom they were not affinely
invariant. It may be interesting, at least for “academic” purpose, to investigate the affinely
invariant models of kinetic energy. They have the Casimir–Killing forms:

Tint =
A

2
Tr
[
Ω2
]

+
B

2
(Tr [Ω])2 , (2)

where A, B are constants. The full kinetic energy is postulated in the form: T = Ttr + Tint,
where Ttr denotes translational and Tint the internal part of kinetic energy, explicitly:

1. on sphere: Ttr =
m

2

((
dr

dt

)2

+ R2 sin2
( r

R

)(dϕ

dt

)2
)

, where r ∈ [0, πR),

2. on pseudo-sphere: Ttr =
m

2

((
dr

dt

)2

+ R2 sh2
( r

R

)(dϕ

dt

)2
)

, where r ∈ [0,∞].

Let us write UB
A in the two-polar decomposition

(
UB

A = RB
CDC

K

(
V −1

)K
A

)
, explicitly:

R =
[

cos α − sin α
sin α cos α

]
, V =

[
cos β − sin β
sin β cos β

]
, D =

[
eλ−µ 0

0 eλ+µ

]
.

The co-moving affine velocity Ω, defined in (1), is given by: ΩA
B =

(
U−1

)A
F

ΓF
DCUD

BUC
GvG+(

U−1
)A

C
U̇C

B. After some calculations we can obtain Ω in the form:

[
−χ sin(2β) sh(2µ) + λ̇ + cos(2β)µ̇ − χ(ch(2µ) − cos(2β) sh(2µ)) + β̇ + sin(2β)µ̇

χ(ch(2µ) − cos(2β) sh(2µ)) − β̇ + sin(2β)µ̇ − χ sin(2β) sh(2µ) + λ̇ − cos(2β)µ̇

]
,

and the internal kinetic energy has the form:

Tint = −aχ2 + 2a ch(2µ)χβ̇ − aβ̇2 + (a + 2b)λ̇2 + aµ̇2,

where χ are given by:

1. on the sphere: χ = α̇ + cos
( r

R

)
ϕ̇,

2. on the pseudo-sphere: χ = α̇ + ch
( r

R

)
ϕ̇.

3 Action-angle description

3.1 Action variables

Let us write the kinetic energy in the concise form: T = m
2 Gij q̇

iq̇j , where
{
qi
}

= {r, ϕ, α, β, λ, µ}.
Now we can introduce the canonical formalism: H = T + V , where T = 1

2mGijpipj . The
matrix Gjk is reciprocal to Gij , i.e. GijG

jk = δi
k.

In the both discussed cases the stationary Hamilton–Jacobi equation

H

(
qa,

∂S

∂qa

)
=

1
2m

Gij ∂S

∂qi

∂S

∂qj
+ V (q) = E
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is separable for potentials of the form: V (q) = Vr(r) + Vλ(λ) + Vµ(µ). Then the action variables
may be explicitly calculated, at least in principle (in quadrature sense), and the degeneracy
problem may be analyzed [3]. The kinetic term in the Hamiltonian has the form:

1. sphere:

T =
p2

r

2m
+

(
pϕ − cos

(
r
R

)
pα

)2
2mR2 sin2

(
r
R

) +
p2

α + 2 ch (2µ) pαpβ + p2
β

4A sh (2µ)
+

p2
λ

4 (A + 2B)
+

p2
µ

4A
,

2. pseudo-sphere:

T =
p2

r

2m
+

(
pϕ − ch

(
r
R

)
pα

)2
2mR2 sh2

(
r
R

) +
p2

α + 2 ch (2µ) pαpβ + p2
β

4A sh (2µ)
+

p2
λ

4 (A + 2B)
+

p2
µ

4A
.

The time-independent Hamilton–Jacobi equation has the form:

H

(
q,

∂S0

∂q

)
= E,

where

S0 = Sr (r) + Sϕ(ϕ) + Sα(α) + Sβ(β) + Sλ(λ) + Sµ(µ)
= Sr(r) + lϕ + Cαα + Cββ + Sλ(λ) + Sµ(µ).

We can separate these equations if ϕ, α and β are cyclic variables.

Remark 1. The form of kinetic term in the Hamiltonian suggested us that perhaps λ should
be cyclic too. But det [D] = exp (2λ), so the size could freely expand to infinity or contract to
the point (although in the infinite time). Of course, if at some initial moment the dilatations
velocity λ̇ had the vanishing value, λ would be constant; however, such a solution is exponentially
nonstable. Because of this, for physical reasons one should use some model of Vλ(λ) stabilizing
the size.

In the spherical case the Hamilton–Jacobi equation has the form:

E =
1

2m

(
∂Sr(r)

∂r

)2

+

(
l − Cα cos

(
r
R

))2
2mR2 sin2

(
r
R

) + V (r) +
C2

α + 2 ch (2µ) CαCβ + C2
β

4A sh (2µ)

+
1

4 (A + 2B)

(
∂Sλ(λ)

∂λ

)2

+
1

4A

(
∂Sµ (µ)

∂µ

)2

+ Vµ(µ) + Vλ(λ), (3)

and in the pseudo-spherical case:

E =
1

2m

(
∂Sr(r)

∂r

)2

+

(
l − Cα ch

(
r
R

))2
2mR2 sh2

(
r
R

) + V (r) +
C2

α + 2 ch (2µ) CαCβ + C2
β

4A sh (2µ)

+
1

4 (A + 2B)

(
∂Sλ(λ)

∂λ

)2

+
1

4A

(
∂Sµ (µ)

∂µ

)2

+ Vµ(µ) + Vλ(λ). (4)

The previous equations may be separated and some explicit calculations are possible. Our action
variables have the form:

Jϕ =
∮

pϕdϕ =
∮

∂Sϕ(ϕ)
∂ϕ

dϕ =
∫ 2π

0
ldϕ = 2πl ⇒ l =

Jϕ

2π
,

Jα =
∮

pαdα =
∮

∂Sα(α)
∂α

dα = Cα

∫ 2π

0
dα = 2πCα ⇒ Cα =

Jα

2π
, (5)

Jβ =
∮

pβdβ =
∮

∂Sβ(β)
∂β

dβ = Cβ

∫ 2π

0
dβ = 2πCβ ⇒ Cβ =

Jβ

2π
.
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When we have Jϕ, Jα and Jβ , we can explicitly calculate Jr, Jλ and Jµ. Let us split the
energy equation into the part depending only on r and the one depending only on λ, µ:

K =
J2

α + 2 ch (2µ) JαJβ + J2
β

16π2A sh2 (2µ)
+ N(λ) +

1
4A

(
∂Sµ (µ)

∂µ

)2

+ Vµ(µ), (6)

where

N(λ) =
1

(A + 2B)

(
∂Sλ(λ)

∂λ

)2

+ Vλ(λ), (7)

on sphere: E =
1

2m

(
∂Sr (r)

∂r

)2

+

(
l − Jα cos

(
r
R

))2
8π2mR2 sin2

(
r
R

) + V (r) + K, (8)

and on pseudo-sphere: E =
1

2m

(
∂Sr (r)

∂r

)2

+

(
l − Jα ch

(
r
R

))2
8π2mR2 sh2

(
r
R

) + V (r) + K. (9)

Action variables have the following form:

Jµ =
∮

pµdµ =
∮ √

4A (K − N(λ) − Vµ(µ)) − J2
α + 2 ch (2µ) JαJβ + J2

β

4π2 sh2 (2µ)
dµ,

Jλ =
∮

pλdλ =
∮ √

4(A + 2B) (N(λ) − Vλ(λ))dλ,

for both cases;

on sphere: Jr =
∮

prdr =
∮ √√√√2m (E − K − Vr(r)) −

(
Jϕ − Jα cos

(
r
R

))2
4π2R2 sin2

(
r
R

) dr,

on pseudo-sphere: Jr =
∮

prdr =
∮ √√√√2m (E − K − Vr(r)) −

(
Jϕ − Jα ch

(
r
R

))2
4π2R2 sh2

(
r
R

) dr.

3.2 Some convenient models of potentials

In elastic models of internal degrees of freedom the potentials should have a local minimum at
the non-deformed configuration (usually, although not necessarily, identified with λ = 0, µ = 0).
For example, Vλ(λ) = κ

2λ2. In non-elastic models this is no necessary. But the potentials should
prevent the body to expand to infinity or contract to a point. Thus, e.g., Vλ(λ) must tend to plus
infinity, when λ tends to minus infinity. Similarly, it should tend to plus infinity, or to some limit
higher than its infimum, when λ tends to plus infinity. In some non-elastic problems, for certain
reason connected with the theory of integrable lattices, something similar to the inverse-square
rule may be convenient, e.g.

Vλ(λ) =
κ

2
λ2, Vµ(µ) = G cth2(2µ), where κ, G are constants. (10)

On SL (2, R) the geodetic model is interesting, when Vµ vanishes at all.
Let us take into account potentials V (µ) depending only on µ like, e.g. (10). For this poten-

tial Jµ is given by:

Jµ =
1
4

(√
(Jα + Jβ)2 + 16AGπ2 +

√
(Jα − Jβ)2 + 16AGπ2

)
− 2π

√
A(G − K + N(λ)).
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Now let us consider a potential V depending only on λ. For all reasons presented in the
Remark 1 we propose V (λ) like, e.g., in (10) and for that potential Jλ is given by:

Jλ = 2πN(λ)

√
2(A + 2B)

κ
.

It is interesting to consider classical and quantum problems without Vµ at all. Then the sign of
constant of separation K depends on the effective potential [4], which is given by (in a conse-
quence of (7) and without V (µ), but not without V (λ)):

Veff(µ, λ, Jα, Jβ) =
J2

α + 2 ch (2µ) JαJβ + J2
β

4π2 sh2 (2µ)
+ 4AN(λ).

The orbits are bounded, when K � 0, an this is just the case we consider. Then Jµ is given by:

Jµ =
1
2
Jα − 2π

√
A(N(λ) − K) and N(λ) =

Jλ

2π

√
κ

2(A + 2B)
.

Now let us consider some potential V (r). At the beginning we consider the spherical case.
We suggest the following model:

V (r) = η ctg2
( r

R

)
,

where η is constant, and for that potential Jr is given by:

Jr =
1
2

(√
(Jϕ − Jα)2 + 8mπ2ηR2 −

√
(Jϕ + Jα)2 + 8mπ2ηR2

)
−
√

J2
α + 8mπ2R2(E + η − K).

In the pseudo-spherical case we take potential in the form:

V (r) =
γ

R2
cth2

( r

R

)
,

where γ is constant. For this potential Jr is given by:

Jr =
1
2

(√
(Jϕ − Jα)2 + 8mγπ2 −

√
(Jϕ + Jα)2 + 8mγπ2

)
−
√

J2
α + 8mπ2R(RE + γ − RK).

Then for the spherical and pseudo-spherical cases, substituting this to the Jr formula and
solving it with respect to the energy parameter E we find in principle the explicit dependence
of Hamiltonian on the action variables. As the resulting expression is rather complicated and
obscure, we do not quote explicit formulae. The Jr’s without potentials look more interesting
and have more lucid structure. Description of the dependence of H on J ’s is more clear:

Jr = Jα − 2π

√
2mR2(E − K) +

J2
α

4π2
.
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3.3 Bohr–Sommerfeld quantization

In 1915 W. Wilson and in 1916 A. Sommerfeld discovered the rules of quantization known today
as the old quantum theory. Now we call them the Bohr–Sommerfeld rules of quantization. We
can use these rules when our Hamiltonians are cyclic in some variables. Then we have:

Ja =
∮

pada = 2πna�.

Then En without potentials for both cases is given by:

En =
1

2mR2
nr(nr + 2nα)�2 +

1
4A

(nµ − 2nα)2�2 +
√

κ

4(A + 2B)
nλ�.

We can do the same for the cases with potentials, but the formulae we obtain are very compli-
cated.

Remark 2. Affinely-rigid body is the simplest generalization of metrically- rigid body with
nontrivial deformable degrees of freedom. The model of internal degrees of freedom, which
we present in this paper, is thought on as a preliminary step towards relativistic theory and
mechanics of continua with microstructure. One can realize some physical applications like the
motion of continental plates or oil pollution on oceans. It is very interesting to consider some
special cases of incompressible affinely-rigid body, like fat spots on a water surface. It is just
a two-dimensional analogue of three-dimensional incompressible objects, like fluid droplet (e.g.
a “droplet” of nuclear matter).
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