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In the turbulence that takes place in rotating fluids, the symmetry assumptions of the theory
of fully developed turbulence may not hold, in particular, isotropy must be relaxed to axial
symmetry. This symmetry reduction leads one to consider the most general axisymmetric
viscosity tensor for a Newtonian fluid, which can be obtained by group theory methods. This
tensor generates new turbulent effective forces on large scales in addition to the molecular
viscous force.

1 Introduction

The turbulent state of a fluid is characterized by the presence of fluctuations of the velocity in
a wide range of scales. These irregular velocity fluctuations enhance the dissipation of energy
in the fluid well over the dissipation pertaining to molecular viscosity. Therefore, one speaks
of an “effective” viscosity that operates in the same range of scales in which the turbulence
takes place. For a general reference on modern ideas about turbulence, see the book by Uriel
Frisch [1].

If we assume that the Navier–Stokes equations for viscous fluids are suitable to describe
turbulence, this phenomenon appears when the nonlinear term becomes dominant, in particular,
with respect to the dissipative term proportional to the molecular viscosity. More formally, as
the nonlinear term (u · ∇)u grows with the driving motion, the laminar flow becomes unstable,
giving rise to irregular velocity fluctuations, which in turn enhance the dissipative term ν∇2u,
because it is very sensitive to the variations of the velocity (due to the second derivative).

The most interesting turbulent state is precisely the one with the maximal amount of non-
linearity, in which the velocity of the driving motion U (associated with a scale L) is very large
in comparison with the molecular viscosity. In technical terms, this state is the solution of the
equations as the Reynolds number Re = UL/ν → ∞, and it is called the state of fully developed
turbulence. As the range of scales with velocity fluctuations grows with Re, in the Re → ∞
limit it becomes formally infinite, so the fully developed turbulence is independent of the large
scale dynamics associated with the driving motion and of the small scale dynamics associated
with molecular dissipation and, in this sense, is “universal”.

Symmetry assumptions are essential in the theory of fully developed turbulence. In fact, the
classical theory of fully developed turbulence applies to maximally symmetric states, namely,
invariant under time translations, on the one hand, and invariant under the space translation
and rotation groups, on the other hand. So fully developed turbulence is a stationary, ho-
mogenous and isotropic state. Of course, these symmetries must be understood in a statistical
sense, as symmetries of suitables averages of the velocity field (correlation functions), since the
instantaneous value of this field is highly irregular.

These symmetry assumptions can be questioned; in particular, the assumption of isotropy
has been questioned [2, 3, 1, 4], arguing that anisotropy can arise from a mean flow or from
anisotropic driving. However, if we preserve homogeneity (space translation symmetry), the
dependence of any property of the flow on its mean velocity, contradicts Galilean invariance. In
contrast, an anisotropic driving is likely to produce anisotropy but contradicts the fact that the
fully developed turbulence state is independent of the driving motion.
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In this symmetry breaking context, we consider here the case of rotating turbulence. Turbu-
lence in uniformly rotating fluids, which is called rotating turbulence, is an example of anisotropic
turbulence and an area of active research [5, 6]. To be precise, in rotating turbulence the full
rotation symmetry must necessarily break down to axial symmetry (the symmetry axis being
the fluid rotation axis).

To study the breakdown of rotation symmetry, we shall first review the fluid equations in
a rotating frame and introduce the viscosity in the standard manner [7] but without recourse to
isotropy. This leads to the viscosity being defined by a four-rank tensor, the viscosity tensor.
Isotropy is replaced by only symmetry around the rotation axis, given by the angular velocity Ω.
Then all the components of the viscosity tensor are determined in terms of Ω by group theory
arguments [8]. Finally, from this tensor we obtain the effective anisotropic forces.

2 Dynamical equations of rotating turbulence

The hydrodynamical equations for a fluid with density ρ(x, t), velocity u(x, t) and pressure
P (x, t) in a rotating frame are [5, 7]

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇P − 2Ω × u − Ω × (Ω × x) + f . (2)

The upper one, namely, the continuity equation, expresses conservation of mass while the lower
one expresses conservation of momentum and includes the force from the gradient of pressure,
the Coriolis and centrifugal forces, and an additional force that accounts for both friction and an
external homogeneous and isotropic random force (in fact, all the forces are rather accelerations,
since they have been divided by the density).

Assuming that the fluid is incompressible, with constant density, the continuity equation
becomes ∇ ·u = 0. If we further define p = P/ρ, every reference to the density disappears from
the momentum equation. Moreover, we can also eliminate p by projecting the solenoidal (or
transverse) components, obtaining

∂u

∂t
+ P[(u · ∇)u] = −P(2Ω × u) + f , (3)

where the transverse projector is

Pij = δij − ∂i
1
∇2

∂j . (4)

We call equation (3) the transverse rotating fluid equation. If we substitute for f an isotropic
viscous force, it becomes the transverse rotating Navier–Stokes equation, but we do not need
to be so restrictive, as we shall see. Note that the transverse rotating fluid equation (3) is
translation invariant (assuming that f is homogeneous), in contrast to equation (2), since the
centrifugal force has disappeared. Therefore, its solutions are homogeneous velocity fields and,
furthermore, one can make use of the Fourier transform.

3 The effective viscosity tensor

In a fluid with no global motion, we can express the forces acting on the fluid element of volume
(or mass) in terms of the stress tensor, which has the general expression

Tij = −Pδij + σij , (5)
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where the deviatoric part σij corresponds to the internal relative motion of fluid elements,
producing the viscous forces fi = ∂jσij . Naturally, σij vanishes if there is no velocity gradient,
∂iu = 0; so for moderate internal relative motion we can assume that σij is proportional to the
velocity gradient, that is,

σij = τijmn∂mun. (6)

This relation characterizes the Newtonian fluids. Furthermore, one can make two assump-
tions [7]:

1. The components of the velocity gradient that are antisymmetric in its two indices (as-
sociated to the vorticity) are excluded; in other words, one only includes the symmetric
components umn = ∂(mun).

2. The stress tensor can be taken to be symmetric in its two indices because of angular
momentum conservation.

Under these conditions, we can write

σij = ηijmnumn, (7)

defining a four-rank tensor with symmetry in the first and second pairs of indices. This tensor
has already appeared in studies of anisotropic turbulence (see, e.g., Ref. [3]). Of course, the
assumption of isotropy leads to the existence of only two proportionality constants, namely,
shear and bulk viscosities, the latter playing no role in incompressible fluids.

However, in a rotating frame, neither isotropy nor the assumptions leading to the symmetry
in the indices hold, so we must content ourselves with the bare proportionality provided by
equation (6). In any event, we can decompose the four-rank tensor τijmn into components with
definite symmetry in the first and second pairs of indices; namely, we can make τ = η+χ+ξ+ζ,
where η has symmetry in the first and second pairs of indices, χ has symmetry in the first pair
and antisymmetry in the second pair, ξ has antisymmetry in the first pair and symmetry in the
second pair, and ζ has antisymmetry in both pairs.

4 General form of axisymmetric viscosity tensor and forces

4.1 Irreducible four-rank tensors with definite symmetry by pairs of indices

To derive the mathematical form of the decomposition τ = η + χ + ξ + ζ according to the
symmetry of pairs of indices (and further decomposition still allowed), let us first work out
the resolution of the general four-rank tensor Tijmn into a sum of tensors of definite symmetry
type given by standard Young tableaux. Young tableaux indicate certain symmetry operations
performed on the indices [8]. We can consider the general four-rank tensor as a tensorial product
of four vectors and, therefore, write its resolution as the Clebsch–Gordan decomposition for the
linear group GL(3) of the corresponding direct product:

i ⊗ j ⊗ m ⊗ n = i j m n ⊕ i j m
n ⊕ i j n

m ⊕ i m n
j ⊕ i j

m n ⊕ i m
j n

⊕ i j
m
n

⊕ i m
j
n

⊕ i n
j
m

(8)

Now, we must project the above linear irreducible representations into irreducible represen-
tations with definite symmetry by pairs of indices. We can do it in two stages, the first one
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achieving symmetry in the first pair and the second one achieving symmetry in the second
pair. Their diagrammatic representation is (the subindices denote either symmetrization or
antisymmetrization with respect to the corresponding indices)

1. First stage:

i j ⊗ m ⊗ n = i j m n ⊕




i j m
n ⊕ i j n

m ⊕ i j
m n ⊕ i j

m
n




(ij)

. (9)

2. Second stage:

i j ⊗ m n = i j m n ⊕


 i j m

n + i j n
m




(ij),(mn)

⊕


 i j

m n




(ij),(mn)

, (10)

i j ⊗ m
n =


 i j m

n + i j n
m




(ij),[mn]

⊕




i j
m
n




(ij),[mn]

. (11)

The tensor with antisymmetry in ij and symmetry in mn is analogous to the one with the
reversed symmetries, given by equation (11). The tensor with antisymmetry in both pairs can
be obtained straightforwardly.

4.1.1 Computation of Young tableaux

The actual derivation of the irreducible representations with definite symmetry by pairs of indices
requires to compute the Young tableaux above and to perform the symmetry operations given
by the subindices. It is simple linear algebra but somewhat cumbersome (for more details, see
Ref. [9]). The results are (left subscripts indicate dimensions of representations):

• Part with symmetry by pairs.
Starting from the general four-rank tensor Tijmn, define

Sijmn = Tijmn + Tjimn + Tijnm + Tjinm. (12)

Then, the computation of the Young tableaux of equation (10) yields:

1. Pair-symmetric part:

i) Totally symmetric part (first Young tableau):

15Sijmn = Sijmn + Smnij + Sjmin + Simjn + Sinjm + Sjnim. (13)

ii) Remaining part (last Young tableau):

6Sijmn = Sijmn + Smnij − 1
2

[Simjn + Sinmj + Smjin + Snjmi] . (14)

2. Pair-antisymmetric part (middle Young tableaux):

15S
′
ijmn = Sijmn − Smnij . (15)
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• Part with symmetry in the first pair and antisymmetry in the second pair.
Now define

SAijmn = Tijmn + Tjimn − Tijnm − Tjinm . (16)

The computation of the Young tableaux of equation (11) yields:

1. First irreducible representation:

15SAijmn = SAijmn +
1
2

[SAimjn + SAinmj + SAmjin + SAnjmi] . (17)

2. Second irreducible representation:

3SAijmn = SAijmn − 1
2

[SAimjn + SAinmj + SAmjin + SAnjmi] . (18)

• Part with antisymmetry in the first pair and symmetry in the second pair: analogous to
the preceding one.

• Part with antisymmetry by pairs.
Define

Aijmn = Tijmn − Tjimn − Tijnm + Tjinm. (19)

For this last part it is not really necessary to use Young tableaux. One obtains:

1. Pair-symmetric part:

6Aijmn = Aijmn + Amnij . (20)

2. Pair-antisymmetric part:

3Aijmn = Aijmn − Amnij . (21)

4.2 Rotation and axial symmetry

4.2.1 Reduction of the four-rank tensor under the rotation group

The preceding linearly irreducible four-rank tensors are, however, reducible under the rotation
group O(3) (which is a subgroup of the linear group GL(3)). The standard reduction of linear
tensors under the rotation group O(3) is performed by extracting and removing traces [8].
Indeed, the O(3) irreducible representations are the symmetric traceless tensors, labelled by their
rank J . Therefore, it is possible to reexpress each of the linear representations corresponding
to the above four-rank tensors as a linear combination of symmetric traceless tensors of equal
or lower rank. For example, from 15S

′ we obtain the symmetric tensor Tljn = εlimS′
ijmn +

εjimS′
ilmn + εnimS′

ijml, which after removing its trace (vector) leads to the J = 3 representation.
From 15S

′ we also obtain the symmetric rank-two tensor Tij = δmnS′
ijmn. Similarly, from 15SA

we obtain the symmetric tensor Tpij = εpmn SAijmn + εimn SAjpmn + εjmn SApimn, and we can
also obtain a symmetric rank-two tensor.

The full result of the reduction under rotations of the linear representations corresponding
to four-rank tensors is (in symbolic form) [8]:

• 15S = 4 ⊕ 2 ⊕ 0, while 6S or 6A = 2 ⊕ 0.

• 15S
′, 15SA or 15AS yield 3 ⊕ 2 ⊕ 1.
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• Of course, 3SA or 3AS, 3A = 1.

Now that we have the decomposition of the viscosity tensor in O(3)-irreducible components,
it is easy to derive its general axisymmetric form. In order to do it, let us note that the
axisymmetric form can only depend on the scalar tensors δij and εijk (the totally antisymmetric
tensor), and the vector marking the symmetry axis, that is, the angular velocity Ωi. In particular,
the latter allows us to construct an infinite sequence of symmetric tensors for every rank J ,
namely:

J = 1: Ωi

J = 2: ΩiΩj

J = 3: ΩiΩjΩk

· · · · · · · · ·

These tensors must be combined with the scalar tensors according to the O(3) Clebsh–Gordan
decomposition above.

4.2.2 Axisymmetric viscosity tensor

The resulting axisymmetric viscosity tensor parts are:

ηS
ijmn = a1 (δijδmn + δimδjn + δinδjm)

+ a2 (ΩiΩjδmn + ΩmΩnδij + ΩiΩmδjn + ΩjΩmδin + ΩiΩnδjm + ΩjΩnδim)

+ a3 ΩiΩjΩmΩn + a4 δijδmn + a5 (ΩiΩjδmn + ΩmΩnδij) , (22)

ηA
ijmn = b1 Ωq(εqimδjn + εqinδjm + εqjmδin + εqjnδim)

+ b2 Ωq(εqimΩjΩn + εqinΩjΩm + εqjmΩiΩn + εqjnΩiΩm)

+ b3(ΩiΩjδmn − ΩmΩnδij), (23)

χijmn = (c1δij + c2ΩiΩj)εlmnΩl + c3(ΩiΩmδjn + ΩjΩmδin − ΩiΩnδjm − ΩjΩnδim)
+ c4(εimnΩj + εjmnΩi), (24)

ζijmn = d1(δimδjn − δinδjm) + d2(ΩiΩmδjn − ΩjΩmδin − ΩiΩnδjm + ΩjΩnδim)
+ d3(εimnΩj − εjmnΩi). (25)

The tensor ξ with antisymmetry in the first pair and symmetry in the second pair has been
suppressed, for its form is analogous to χ’s, with different coefficients, say c′1, . . . , c′4. The total
number of coefficients is 19. Of course, we can let depend these scalar coefficients on Ω2.

4.3 Effective forces

Once we have the general form of the axisymmetric viscosity tensor, we can obtain the general
form of the axisymmetric effective forces, according to equation (6), by the relation

fi = ∂jσij = τijmn∂jmun. (26)

Note that this equation implies that only the components of τijmn symmetric in jm contribute
to the force. Therefore, the number of independent axisymmetric components of the force is
smaller than 19, that is, some of the 19 coefficients of the axisymmetric viscosity tensor are
redundant, as we shall see.
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Taking into account that ∇ ·u = 0 and suppressing gradient terms (which do not contribute
to the transverse rotating fluid equation), we obtain:

f = (a1 − d1)∇2u − b1(Ω ×∇2u) − b2(Ω · ∇)2(Ω × u) − (b2 + c′2)(Ω · ∇)(Ω ×∇)(Ω · u)

+ (b2 + c2)Ω(Ω · ∇)(Ω · ω) + (c4 + c′4 + d3)(Ω · ∇)ω + (a2 − c3 + c′3− d2)Ω∇2(Ω · u)

+ (a2 + c3 − c′3 − d2)(Ω · ∇)2u + a3Ω(Ω · ∇)2(Ω · u). (27)

Several remarks about this effective force are in order. Note that the fifth and sixth terms
of the force involve the vorticity ω = ∇ × u and are proportional to an odd power of Ω. The
terms preceding them are also proportional to an odd power of Ω, except for the first one, which
is isotropic. These terms proportional to an odd power of Ω would not be allowed if isotropy
were broken by a polar vector (instead of Ω). More importantly, 5 of the 19 coefficients are
missing after making ∇ · u = 0 and suppressing gradient terms, and some of the remaining
ones are redundant: inspecting equation (27), we see that there are two redundant coefficients
among c4, c′4, d3, two redundant coefficients among a2, c3, c′3, d2, and one redundant coefficient
among a1, d1.

After taking into account that ∇ · u = 0 and suppressing gradient terms, there remain only
the coefficients of the part of τ that is traceless in the first pair and in the second pair of indices.
Gradient terms are longitudinal and the physical force must be transverse (solenoidal); but, after
removing these terms, the force is still non-transverse and must be projected with the nonlocal
operator P of equation (4). This operation brings back two supressed gradient terms, namely,
∇(Ω · ω) = 0 and ∇[(Ω · ∇)(Ω · u)], in addition to producing nonlocal gradient terms.

5 Conclusions

We have studied the consequences of the axial symmetry of a uniformly rotating fluid for its
homogeneous turbulent state, focusing on the four-rank tensor defining the linear relation be-
tween the stress tensor and the velocity derivatives (called the “viscosity tensor”). This study
has been carried out with general methods of the theory of tensorial group representations.

The most general four-rank viscosity tensor comprises five parts:

• a tensor ηS symmetric by pairs of indices and pair symmetric, accounting for the usual
proportionality relation between (anisotropic) stress and strain rate;

• a tensor ηA symmetric by pairs and pair antisymmetric embodying a new relation between
stress and strain rate, typical of rotating fluids, since it does not lead to dissipation;

• a tensor χ symmetric in the first pair of indices and antisymmetric in the second, which
accounts for a stress tensor coupling to vorticity;

• a tensor ξ antisymmetric in the first pair of indices and symmetric in the second, which ac-
counts for the antisymmetric part of the stress tensor (angular momentum non-conserving)
that couples to the strain rate.

• a tensor ζ antisymmetric in both pairs of indices, which accounts for the antisymmetric part
of the stress tensor that couples to the vorticity. This tensor can be further decomposed
into pair-symmetric and pair-antisymmetric parts, like η.

The theory of tensorial group representations allows us to find the O(3) Clebsch–Gordan de-
composition of these tensors and, hence, its axisymmetric form.

This variety of components of the “viscosity tensor” is reflected in the various effective forces
that arise from them. However, given that the force is a vector, its number of axisymmetric
independent components is smaller and, moreover, it is even smaller after suppressing gradient
terms; namely, it boils down to just nine independent components.
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