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The aim of the note is to provide an introduction to the algebraic, geometric and quantum
field theoretic ideas that lie behind the Kontsevich–Cattaneo–Felder formula for the quan-
tization of Poisson structures. We show how the quantization formula itself naturally arises
when one imposes the following two requirements to a Feynman integral: on the one side
it has to reproduce the given Poisson structure as the first order term of its perturbative
expansion; on the other side its three-point functions should describe an associative algebra.
It is further shown how the Magri–Koszul brackets on 1-forms naturally fits into the theory
of the Poisson sigma-model.

1 Deformation quantization as a Feynman diagrams expansion

A Poisson manifold is a differentiable manifoldM endowed with a bi-vector α ∈ Γ(M ;TM∧TM)
such that [α, α] = 0, where [·, ·] is the Schouten–Nijenhuis bracket (see e.g. [7]). The bi-vector
α defines a Poisson algebra structure on the space of smooth functions on M by

{f, g} := 〈α |df ∧ dg〉.

The problem of deformation quantization of the given Poisson structure is that of finding an
associative �-product on C∞(M)[[�]] deforming the usual pointwise product on C∞(M) and
having the Poisson bracket as the first order term in �:

(f � g)(x) = f(x)g(x) +
i�

2
{f, g}(x) +O

(
�

2
)
, (1)

or, more generally,

(f � g)(x) = f(x)g(x) +
i�

2
({f, g}+B(f, g)

)
(x) +O

(
�

2
)
, (2)

where B is a symmetric bi-differential operator. This problem has been solved by M. Kon-
tsevich [3], and his solution was then interpreted in the language of quantum field theories by
A. Cattaneo and G. Felder [2]. These notes are an attempt to explain why the Cattaneo–Felder
model naturally arises when one tries to look at (1) as the perturbative expansion of a Feynman
integral:
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.
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We see from this formula that there are two types of vertices, namely the ones labelled by the
functions f, g and the ones labelled by the bi-vector α, and that the propagator is

��

= dxi ⊗ ∂i,

where ∂i is a shorthand notation for ∂/∂xi. By the above description, we see that our fields are
tangent and cotangent vectors at x; moreover, in order to look at α as to a function of the fields,
we have to consider the cotangent vectors as odd fields, i.e., the coordinates ηi of a cotangent
vector η are anticommuting variables. Therefore, the natural choice for the space of fields is
TxM ⊕ΠT ∗

xM , endowed with the natural pairing 〈∂i|dxj〉 = δji .
The functions f and g and the Poisson bi-vector α can be seen as functions on the space of

fields, by using the Taylor expansions:

f(ξ, η) := f(x+ ξ) = f(x) + ∂if(x)ξi +
1
2
∂i∂jf(x)ξiξj + · · · ,

g(ξ, η) := g(x+ ξ) = g(x) + ∂ig(x)ξi +
1
2
∂i∂jg(x)ξiξj + · · · ,

α(ξ, η) := 〈α(x+ ξ)|η ∧ η〉 = αij(x)ηiηj + ∂kα
ij(x)ηiηjξk + · · · ,

where ξ ∈ TxM and η ∈ ΠT ∗
xM . Now consider

∫
TxM⊕ΠT ∗

xM
dξdη f(x+ ξ) g(x+ ξ) e

i
�
S(ξ,η)

/∫
TxM⊕ΠT ∗

xM
dξdη e

i
�
〈ξ|η〉, (3)

where the action is

S(ξ, η) = Sfree(ξ, η) + Sint(ξ, η) := 〈ξ|η〉+ 〈α(x+ ξ)|η ∧ η〉.

By the usual Feynman rules, the perturbative expansion of (3) is
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which is of the form (2). Note that, if α is constant as a function of x ∈M , then the perturbative
expansion of (3) is

(f � g)(x) =
∞∑
n=0

1
n!

(
i�

2

)n
αi1j1 · · ·αinjn∂i1 · · · ∂inf(x) ∂j1 · · · ∂jng(x)

which is precisely the Moyal �-product formula. However, for general α, formula (3) does not
yield an associative �-product. A way to remedy this is to consider a topological space whose
geometry describes the structure of associative algebras, and pull back our integral onto this
space.

2 Punctured disks and associative algebras

Let D be the unit complex disk, and let Bn be the moduli space of (n+1) points on the boundary
of D, for n ≥ 2. The disk D is identified with the complex upper half plane and its boundary
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with R∪{∞}. Since the group of the biholomorphisms acts 3-transitively on the set of boundary
points on D, we can fix three of them to be 0, 1 and∞, and make all the others lie in the interval
(0, 1). Therefore Bn is just the open (n− 2)-dimensional simplex 0 < t1 < · · · < tn−2 < 1. One
can define a compactification Bn of Bn by adding products of Bn′ , n′ < n; these new boundary
components correspond to the collapsing of two or more points in the boundary. For instance,
there are two boundary components in B3 corresponding to the degenerations as t = t1 goes
to 0 or to 1.
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Now, we look at B2 as to an operation m2 with two inputs (the points 0 and 1) and one output
(the point ∞). Note that the two boundary components of B3 correspond to the two ways of
composing m2 with itself, namely m2(m2 ⊗ id) and m2(id ⊗m2). So, if we find a continuous
family of operations m3(t), t ∈ (0, 1), with three inputs and one output, which extends to the
compactification B3 (in a way compatible with the product structure of the boundary), then
the associativity of m2 is equivalent to m3(0) = m3(1). If moreover m3(t) is differentiable, this
is equivalent to

m2 associative ⇔
∫ 1

0
dt

dm3(t)
dt

= 0.

Remark 1. In the language of operads, the above discussion corresponds to the well-known
fact that the chain complex C∗(Bn) is the operad governing A∞ algebras. In particular one says
that m2 is associative only up to the homotopy m3.

Now, we want to define m2 and m3 on the space of smooth functions on the Poisson mani-
fold M , in such a way that m2 is related to equation (3). The most natural choice is to consider
the “expectation value” over the maps X : D → M of the product f(X(0)) g(X(1))h(X(∞))
w.r.t. some measure to be defined, and “raise” the indices, i.e., set h to be the Dirac delta
function δx. In other words we are looking for an operation m2 of the form

m2(f, g)(x) =
∫

dµ(X) f(X(0)) g(X(1)) δx(X(∞)). (4)

As for m3 = m3(t), we set

m3(f, g, h)(x) =
∫

dµ(X) f(X(0)) g(X(t))h(X(1)) δx(X(∞))

so that the associativity of m2 becomes∫
dµ(X)

∫ 1

0
dt
(
f(X(0))

dg(X(t))
dt

h(X(1)) δx(X(∞))
)

= 0. (5)

3 The Poisson sigma-model

In this Section we want to combine equation (4), which defines an associative product, with
equation (3), which has the correct first term in its perturbative expansion. First, the measure
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dµ(X) in equation (4) should be of the form (1/C) dξde
i
�
S(ξ,η) as in equation (3), where C is

a suitable normalization constant. In order to accomplish this, a new field, denoted by η, has
to be introduced: it has to be defined on the disk and take values in ΠT ∗

xM . Moreover, since
the new action S will be an integral over D, it is natural to take η ∈ Ω1(D;X∗(ΠT ∗M)). We
are therefore led to consider the following object

∫
dXdη f(X(0)) g(X(1))δx(X(∞)) e

i
�
S(X,η)

/∫
dXdη e

i
�

∫
D〈dX|η〉, (6)

where S(X, η) =
∫
D〈dX|η〉+ 1

2

∫
D〈α(X)|η ∧ η〉.

Notice however that in equation (3), we have a tangent vector ξ ∈ TxM , where x is some
point in M . Hence, what we should consider are infinitesimal variations of the map X around
the constant map X ≡ x. In other terms, in equation (6) we have to replace X with x+ ξ where
ξ ∈ Ω0(D;X∗(TM)).

Since the map X at the point ∞ is fixed to be equal to x by the term δx(X(∞)), we have to
impose the boundary condition ξ(∞) = 0; finally the 1-form η is required to vanish on tangent
vectors to the boundary of the disk D. The action now reads

S(ξ, η) =
∫
D
〈dξ|η〉+ 1

2

∫
D
〈α(x+ ξ)|η ∧ η〉,

and we define

(f � g)(x) :=

∫
dξdη f(x+ ξ(0)) g(x+ ξ(1)) e

i
�
S(ξ,η)

∫
dξdη e

i
�

∫
D〈dξ|η〉

. (7)

In order to perform the perturbative expansion of (7), symmetries of the action have to be
taken into account. A systematic way of doing this is via the superfield formalism, namely we
consider the superdisk D2|2 with even coordinates u1, u2 and Grassmann coordinates θ1, θ2 and
set

ξ̃i = ξi + η+ i
µ θµ +

1
2
β+ i
µν θ

µθν , η̃i = βi + ηi µθ
µ +

1
2
ξ+i µνθ

µθν .

The de Rham differential now reads D = θµ
∂
∂uµ and the �-product becomes

(f � g)(x) =

∫
ξ+=η+=β+=0

dξ̃dη̃ f(x+ ξ̃(0)) g(x+ ξ̃(1)) e
i
�
S(ξ̃,η̃)

∫
ξ+=η+=β+=0

dξ̃dη̃ e
i
�

∫
D2|2 〈Dξ̃|η̃〉

, (8)

where the superaction is

S(ξ̃, η̃) :=
∫
D2|2
〈Dξ̃|η̃〉+ 1

2

∫
D2|2
〈α(x+ ξ̃)|η̃ ∧ η̃〉. (9)

Notice that besides of the original fields ξ, η (and their “antifields” ξ+, η+), a new field β has
appeared, which can be interpreted as an infinitesimal symmetry of the original action (see
Remark 4 below).

The advantage of this reformulation of the Poisson sigma-model is that we can now apply
the Batalin–Vilkovisky formalism and deform the subspace ξ+ = η+ = β+ = 0 over which the
integration is performed, in such a way that the perturbative expansion is well defined.
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4 Batalin–Vilkovisky formalism

We recall that for any vector space V , the space of functions on V ⊕ ΠV ∗ is naturally en-
dowed with a BV algebra structure [1, 6]. Using the standard terminology, we call fields the
coordinates vi on V and antifields the coordinates v+

i on ΠV ∗. The BV bracket between two
functionals f, g : V ⊕ΠV ∗ → R is given by

(f, g) :=
←−
∂ f

∂vi

−→
∂ g

∂v+
i

−
←−
∂ f

∂v+
i

−→
∂ g

∂vi

while the BV Laplacian is

∆f =
−→
∂

∂v+
i

←−
∂

∂vi
f.

The BV bracket and the BV Laplacian satisfy, together with the pointwise product, the axioms
of a BV algebra, namely

(f, g) = −(−1)(|f |−1) (|g|−1)(g, f),

(f, (g, h)) = ((f, g), h) + (−1)(|f |−1)(|g|−1)(g, (f, h)) = 0,

(f, gh) = (f, g)h+ (−1)(|f |−1)|g|g(f, h),

(f, g) = ∆(fg)−∆(f)g + (−1)|f |f∆(g),

∆2 = 0.

In particular a ∆-cohomology is defined on the space of functional on the fields-antifields.
In our case (ξ, η, β) ∈ V = Ω0(D,X∗(TM)) ⊕ Ω1(D,X∗(ΠT ∗M)) ⊕ Ω0(D,X∗(ΠT ∗M)) and

(ξ+, η+, β+) ∈ ΠV ∗ = Ω2(D,X∗(ΠT ∗M)) ⊕ Ω1(D,X∗(TM)) ⊕ Ω2(D,X∗(TM)). A “total de-
gree” is then introduced by saying that a form on D with values in X∗(TM) has total degree
zero, while a form with values in X∗(ΠT ∗M) has total degree 1. Next, we define the “ghost
number” gh as the difference between the total degree and the degree deg as a differential form
on D. We summarize the degrees and ghost numbers of our fields and antifields in the following
table:

gh\deg 0 1 2
−2 β+

−1 η+ ξ+

0 ξ η

1 β

A main feature of the BV formalism is that the integral of a ∆-closed functional H performed
over a Lagrangian submanifold L in the space of fields-antifields, depends only on the homology
class of L and that the integral of a ∆-exact functional is zero. Hence, integration defines a
pairing between homology classes of Lagrangian submanifolds and ∆-cohomology classes. An
easy computation shows that a functional of the form e

i
�
S is ∆-closed if and only if S satisfies

the “quantum master equation”

(S, S)− 2i�∆(S) = 0 (10)

as indeed happens for the superaction (9) of the Poisson sigma-model [2] (see also Remark 3
below). More generally, if the functionalH is of the formO e i

�
S for some functionalO and some S

satisfying equation (10), we have that ∆(O e i
�
S) = 0 if and only if Ω(O) = 0, where Ω(O) :=
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(S,O) − i�∆(O). Equation (10) immediately implies Ω2 = 0 and the relevant cohomology
classes are called “observables” of the theory. Since the “expectation value” 〈O〉 :=

∫
LO e

i
�
S

of an observable O depends only on the homology class of L, the perturbative expansion of the
original path integral (7), which corresponds to integrating over the Lagrangian submanifold
ξ+ = η+ = β+ = 0 (and which is actually ill-defined due to the symmetries), can be effectively
computed by choosing an appropriate submanifold where the quadratic part of the action is
non-degenerate (see [2] for details).

Remark 2. For any point u in the boundary of D, one has

Ω(ξ̃i(u)) = Ω(η̃j(u)) = 0. (11)

This gives a way to construct observables for the Poisson sigma-model from a point u ∈ ∂D and
a smooth function ϕ of ξ̃ and η̃. Indeed, the functional Oϕ, u(ξ̃, η̃) := ϕ(ξ̃(u), η̃(u)) is clearly
Ω-closed. In particular, f(x+ ξ̃(0)) and g(x+ ξ̃(1)) from equation (8) are observables.

Remark 3. Given a p-multivector field ψ, written in coordinates as ψ(x)i1,...,ip∂i1 ∧ · · · ∧ ∂ip ,
we can consider

Sψ(ξ̃, η̃) :=
∫
D2|2

ψ(x+ ξ̃)i1,...,ip η̃i1 · · · η̃ip .

Notice that with this notation the superaction (9) becomes S(ξ̃, η̃) = Sfree(ξ̃, η̃) + Sα(ξ̃, η̃). An
explicit calculation shows that the map ψ �→ Sψ is a Lie algebra morphism

(Sψ1 , Sψ2) = S[ψ1,ψ2]

where we have the BV bracket on the l.h.s. and the Schouten–Nijenhuis bracket on the r.h.s.
In particular, since the bi-vector α is Poisson, we have (Sα, Sα) = 0. When the “free” part
of the superaction is taken into account, it is not difficult to show that (Sfree, Sfree) = 0 and
(Sfree, Sψ) = 0, which in turn imply the so-called “master equation” for (9)

(S, S) = (Sfree + Sα, Sfree + Sα) = 0. (12)

A consequence of this equality is that δf := (S, f) is a coboundary operator. Finally, notice that
the quantum master equation (10) descends immediately from the relations ∆(Sfree)=∆(Sα)=0.

Remark 4. Using the operator δ defined above, we can rewrite equation (12) as

δS = 0. (13)

On the other hand one explicitly computes

δξ̃i = Dξ̃i + αij(x+ ξ̃)η̃j , (14)

δη̃i = Dη̃i +
1
2
∂iα

jk(x+ ξ̃)η̃j η̃k. (15)

The operator δ|ξ+=η+=β+=0 can be seen as a vector field on the space of functionals of (ξ, η)
depending on the choice of β. We denote by δβ this vector field. Now, equations (13)–(15)
together imply that δβ is an infinitesimal symmetry of the original action S(ξ, η). Explicitly this
symmetry reads

δβξ
i = αij(x+ ξ)βj ,

δβηi = −dβi − ∂iαjk(x+ ξ)ηjβk.
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5 Ward identities

The equation
∫
L ∆(H) = 0 produces non-trivial identities (called “Ward identities”) among the

expectation values. For instance if φ(ξ̃, η̃) is a ∆-closed functional, the following equality easily
descends from the axioms of a BV algebra

0 =
∫
L

∆
(
e

i
�
Sφ
)

=
∫
L
e

i
�
Sδφ. (16)

Now consider

φ =
∫ 1

0
dt
∫

dθ f(x+ ξ̃(0)) g(x+ ξ̃(t, θ))h(x+ ξ̃(1)).

An explicit computation using equation (14) shows that

δφ =
∫ 1

0
dt

(
f(x+ ξ̃(0))

dg(x+ ξ̃(t))
dt

h(x+ ξ̃(1))

)
.

Therefore equation (16) has precisely the form of equation (5) and the Ward identity for this
choice of φ is the associativity equation

0 =
∫
L

∆
(
e

i
�
Sφ
)

= ((f � g) � h)− (f � (g � h)).

6 The Magri–Koszul bracket

If ω is a 1-form on M we can associate to it a function on TxM ⊕ΠT ∗
xM by

ω(ξ, η) = ω(ξ) := 〈ω(x+ ξ)|ξ〉 = ωi(x)ξi + ∂jωi(x)ξiξj + · · · .

Similarly, to a vector field χ we can associate the function

χ(ξ, η) := 〈χ(x+ ξ)|η〉 = χi(x)ηi + ∂jχ
i(x)ηiξj + · · · .

The perturbative expansion of the integral∫
TxM⊕ΠT ∗

xM
dξdη ω1

(
ξ
)
ω2

(
ξ
)
χ
(
ξ, η
)
e

i
�
S(ξ,η)

∫
TxM⊕ΠT ∗

xM
dξdη e

i
�
〈ξ|η〉

is closely related to the Magri–Koszul bracket on 1-forms [4, 5]. More precisely, if we apply the
Poisson sigma-model techniques to this situation, the function ω1

(
ξ
)
ω2

(
ξ
)
χ
(
ξ, η
)

is changed
into ω1

(
ξ̃(0)

)
ω2

(
ξ̃(1)

)
χ
(
ξ̃(∞), η̃(∞)

)
. Since ξ(∞) = 0, we have χ(ξ̃(∞), η̃(∞)) = χi(x)η̃i(∞).

Therefore the perturbative expansion of the path integral:∫
ξ+=η+=β+=0

dξ̃dη̃ ω1(ξ̃(0))ω2(ξ̃(1))χ(ξ̃(∞), η̃(∞)) e
i
�
S(ξ̃,η̃)

∫
ξ+=η+=β+=0

dξ̃dη̃ e
i
�

∫
D2|2 〈Dξ̃|η̃〉

, (17)
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will depend on χ(x) but not on its derivatives. The first order expansion of the integral (17) is
i�

2

〈
ω1 • ω2

∣∣χ〉+O
(
�

2
)

where

〈
ω1 • ω2

∣∣χ〉 :=
•��

��
��

��
ω1

•�
��

��
�

��
ω2

α

•�
��

�

��

χ

+
•��

��
��

��
ω1

•�
��

��
�

��
ω2

α

•��
��

		

χ

+
•��

��




ω1
•�

��
�

��
ω2

χ

�� α +

ω1
•��
ω2

•��
χ



 α +

ω2
•��
ω1

•��
χ



 α

If we define

[ω1, ω2] :=
ω1 • ω2 − ω2 • ω1

2

then

[ω1, ω2] = αij(∂iω1 k + ∂kω1,i)ω2,jdxk + αijω1,i(∂jω2 k + ∂kω2,j)dxk + ∂kα
ijω1,iω2,jdxk

= (∂kαijω1,iω2,j + αij∂kω1,iω2,j + αijω1,i∂kω2,j)dxk

− αij∂jω1 kω2,idxk + αijω1,i∂jω2 kdxk

= d〈α|ω1 ∧ ω2〉+ Lα�ω1ω2 − Lα�ω2ω1,

i.e., the bracket [ω1, ω2] is precisely the Magri–Koszul bracket on 1-forms.
In particular one can recover the Jacobi identity for the Magri–Koszul bracket as a Ward

identity (see Section 5) by choosing

φ =
∫ 1

0
dt
∫

dθ ω1(x+ ξ̃(0))ω2(x+ ξ̃(t, θ))ω3(x+ ξ̃(1))χ(ξ̃(∞), η̃(∞)).
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