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We review several nonlinear mathematical models for physical systems which are based on
a gauge-like structure. For systems with internal degrees of freedom like spin, a nonlinearity
leads to coupling of the internal coordinates; this kind of interaction appears as an addition
to the coupling through Pauli or Dirac matrices. We briefly discuss a family of nonlinear
and relativistically invariant extensions of the Dirac equation.

1 Introduction

Construction of mathematical models for physical systems is often connected with the problem
of extending a partly successful theory. The motivations are different: e.g. the parameter regions
and the space time domains of a model are too narrow or the chosen mathematical framework
is not suitable for a realistic model. Such extensions are expected to explain new observable
effects and to provide corrections to the “old” theory. For their development different options
are at hand: generalisations of the theory, changes of the present mathematical formalism or
inventions of new mathematical methods.

2 An example

2.1 Gauge like models

We illustrate this problem for an example in the following (gauge theoretic) design: A system
is modelled through linear partial differential operator (PDO) D on a suitable k-vector valued
function space G over space-time R

3
x × R

1
t . The solution variety

B = {f(x, t)/Df(x, t) = 0, f(x, t) ∈ G}

serves as a basic background structure for the set O = {o} of (all or a part of the) physical
observables o. This means that the elements of O are modelled through functions Fα, α =
1, . . . , s, of the solution variety. These utility functions form a set B = {Fα(f), α = 1, . . . , s, f ∈
B} with a map

O � o �→ Fα (f) ,

where α depends on o. Hence the system is modelled through {G,D, B}. In general this descrip-
tion is not complete. Further properties have to be included and the physical interpretation is
essential. The characterisation of the models as ‘gauge like’ stems from the example of electro-
dynamics and quantum mechanics [1].
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2.2 Extensions of gauge like models

There are only few plausible and manageable possibilities to extend a gauge like theory based
on {G, D, B}. We mention here two lines: the deformation of possible symmetries of D and the
construction of nonlinear D through extensions with nonlinear transformations in G.

A. Deformations of symmetries. If D has a group theoretical or an algebraic symmetry S,
one can extend this symmetry through deformations Sdef of S. Use the function space G′ which
carries a realisation of Sdef, construct from D the corresponding deformed operator Ddef and
take the same utility functions as before. The result is a deformed extension {G′,Ddef, B} of
{G,D, B}.

B. Nonlinear extensions. Another method is based on an interplay between the linear
operator D and B; it leads to nonlinear extensions. Consider a group N of linear or nonlinear
and invertible transformations in B

N � N : B � f �→ N [f ] = N(f)f ∈ B
The partial differential equation (PDE) Df = 0 implies

DN = DN(f) with DNf
′ = 0, f ′ = N(f)f.

The operator DN is nonlinear (for nonlinear N) and leads together with the utility functions
to the same description as before if N is chosen such that the utility functions are invariant
under N , namely

Fα(N [f ]) = Fα(f), Fα ∈ B.

Transformations with this Equivalence Condition [1] also generate a transformation group Ne ⊂
N (e denotes equivalence). The theory based on {G,D, B} and {G,DN , B} describes the same
physical system; both are physically equivalent. However, through the description with DN some
additional properties A of the linear system which are not encoded in {G,D, B}, could be lost,
e.g. the space-time symmetry or the separability of D. To restore such properties, restrict N

to subgroups NA such that they are invariant and use NA ∩ Ne = NA,e. Nonlinear extensions
through Ne ∈ N are trivial reformulations of the linear system. To get something “new”, i.e.
a non trivial extension, change DN to Dext = (DN )ext if there is an obvious and plausible method
to do this [1]. This is the case if the coefficients (functions, numbers) in DN are related among
each other: Break this relations, i.e. consider the coefficients as independent or free, get Dext,
use the same G and B and find a nonequivalent description {G,Dext, B}; hence a “new” system
appears which contains the “old” system.

2.3 Quantum mechanics as a gauge like model

We specialise this design to the time evolution of a quantum mechanical observable. Here the
function space G is a suitable Hilbert space H, its elements are k-vector valued wave func-
tions ψ(x, t) = (ψ1(x, t), . . . , ψk(x, t)), DQ is the quantum mechanical time evolution, e.g. the
Schrödinger operator DS , and the (only, i.e. s = 1) utility function is the positional density for
all x and t

F�ψψ =
k∑

j=1

ψ∗
jψj

with ψ = (ψ∗
1, . . . , ψ

∗
k)

T , T denotes the transpose. All properties of the system are encoded in one
utility function F� and the evolution operator (see e.g. [3]). The system is characterised through
(H,DQ, Fq). A similar design appears in gauge theories like electrodynamics; the situation in
relativistic quantum field theory is different.
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2.4 Extensions of quantum mechanical evolutions

We sketch some application of the lines A and B (Section 2.2) and present in Sections 3 and 4
the detailed version of line B.

A. Deformations of symmetries. A symmetry of a quantum system is often connected
with algebraic symmetries through a linear (possibly integrable) representation of a finite or
infinite dimensional (space time or kinematical) Lie algebra; examples in R

3
x × R

1
t are: the cen-

tral extension of the Galilei algebra, the Poincaré algebra or the Lie algebra of a subgroup of
the inhomogeneous diffeomorphism group of the configuration space (Borel quantisation [4, 5]);
inhomogeneous current algebras [6, 7]. There are physical and mathematical reasons to deform
(extend or contract) this algebra (in the sense of Gerstenhaber) in the category of Lie alge-
bras or, more general, in the category of Hopf algebras. In the first case one gets a relation
between Poincaré and Galilei algebras. In the latter case one finds a q-algebra or q symmetry,
the evolution operator appears as a difference operator, the space-time has discrete properties
with a corresponding behaviour of the wave functions and the utility function. Another related
extension is choice of a noncommutative space-time. Algebraic symmetries can be formulated
in the usual (linear) quantum mechanical framework. Properties and behaviour of the corre-
sponding systems are available and a comparison with undeformed symmetries is possible. The
interest in this mathematical and physical field is strong. However, there is up to now only
“weak” experimental evidence for extended symmetries.

B. Nonlinear extensions. Quantum mechanics is based deeply on linear structures (the
above mentioned gauge like design is e.g. a linear construction). A physically acceptable non-
linear extension of quantum mechanics – e.g. with nonlinear evolutions equations – such that
the linear theory appears as a linear approximation is not known. The reason is that the linear
framework does not allow for nonlinear operators (Hamiltonians) [8]. It is in principle difficult to
develop such extensions; also the usual physical interpretation breaks down. On the other hand
a deeper reason for a linear structure of quantum mechanics is unknown. Therefore a reasonable
first ansatz for a nonlinear extension is of interest, especially a derivation of nonlinear evolutions
equations from first (physical) principles. The known methods for calculation of physical pro-
perties can be applied in an extended theory as approximations for deviations from the linear
theory. In recent quantum mechanical precision experiments such nonlinear deviations were
not found [9]. But future experiments and a new experimental design could reveal quantum
mechanical nonlinearities.

3 Nonlinear Schrödinger, Pauli and Dirac equations

3.1 Linear evolution equation and a locality condition

We present and partly review nonlinear extensions for the evolution of a quantum mechanical
observable in the (H,DQ, F�) design (see Section 2.3). For k = 1, DQ is the Schrödinger operator(
ν1 = − �

2m , µ0 = 1
�

)
DS =

( − i∂t + ν1∆ + µ0V (x)
)
;

for k = 2, DQ is the Pauli operator

DP =
( − i∂t + V1∆ + µ0V (x) + α�B (x, t) × �σ + β�L× �σ

)
,

with �σ as Pauli matrices, �B(x, t) as external field and �L as angular momentum; for k = 4, DQ

is the Dirac operator (� = 1)

DD = (jµpµ −m) , pµ = i
∂

∂xµ
;
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we use the notation of [13]; the component index k runs from 0 to 3, the time component is
labelled by 0; the solutions depend on x0, x1, x2, x3.

As a first additional simplifying property A for D (to avoid e.g. boundary value discussions)
we want that the highest order of DQ and of DQ,N is the same. This implies a locality condition
for N

N (ψ) = (N1 [ψ] , . . . , Nk [ψ]) = (N1 (ψ)ψ1, . . . , Nk (ψ)ψk) .

The nonlinear transformations Ni (ψ) , i = 1, . . . , k act on H as multiplicative operators and
depend on ψ only. They form a group Nl ⊂ N (l stands for locality).

3.2 A separability condition

A next additional property, a separability condition, stems from the fact that quantum mechan-
ical systems are composed of n one-particle systems with Hilbert spaces Hj and self adjoint
operators Aj for the same observable o′ in each system j = 1, . . . , n. The Hilbert space for the
n-particle system is chosen as

H(n) = H1 ⊗ · · · ⊗ Hn

with a dense set of product states

P (n) =
{
ψ1 ⊗ · · · ⊗ ψn, ψj ∈ Hj , j = 1, . . . , n

}
.

The corresponding observable o′ of the n-particle system is represented on the product states as

A
(n) =

(
A1ψ

1 ⊗ · · · ⊗ Anψ
n
)

and extend to H(n) through linear completion.
For a nonlinear operator, like N , this procedure is not possible. As in the linear case N (n)

can be defined on product states P(n) but an extension to H(n) is not defined; some further
guideline is needed. Here one of the difficulties for nonlinear extensions shows up. It is plausible
to require as a minimal assumption that for a 2-particle system the relation

N (2)
[
ψ1 ⊗ ψ2

]
= N

[
ψ1

] ⊗N
[
ψ2

]
holds. This is a separability condition [1], it implies that a k -component function N (ψ) on P (2)

exists such that for N � Nl and any two ψ1, ψ2, i = 1, 2 the condition holds. Such N form
a group Nl,s (s for separability). Its elements are calculated in [10]. We quote the results for G
(which may be specified for the corresponding Hilbert space) and use the (not unique) polar
decomposition for ψj (x, t) = Rj (x, t) exp iSj (x, t) .

The transformations

N : G �→ G

which satisfy the locality and separability condition are given through

Nj (ψ)[a,b,F ] = (Rj)
a−1 exp ((b− i)Sj) · Fj

(
R2

R1
, . . . ,

Rn

R1
, S2 − S1, . . . , Sn − S1

)

The N are labelled by two complex parameter a, b and k functions

F (ψ) = (F1 (ψ) , . . . , Fk (ψ)) .
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In order to derive the group multiplication law, arrange the parameter a = ã+ iâ, b = b̃+ îb as

K =
(
ã â

b̃ b̂

)

and find for the product

N[K2,F2]

(
N[K1,F1] (ψ)ψ

)
N[K1,F1] (ψ)ψ = N[K3,F3]ψ

with

K3 = K2K1,

F31 = |F1j |a2 exp (b2 argF1j)F2j (u2, . . . , un, v2, . . . , vn) .

The variables in F1j and in F2j are as before resp. given through (i = 2, . . . , k)

ui =
(
Ri

R1

)ãi

exp b̃1 (S1 − Si) |F1i||F11|−1,

vi = â1 ln
(
Ri

R1

)
+ b̂1 (S1 − Si) arg (F1iF11) .

respectively. The group Nl,s is a local (infinite) parameter group; the element N11 is the identity,
N[K,F ] is locally invertible in a neighbourhood of the identity; the associativity is respected. For
n > 2 the corresponding result holds.

3.3 Quantum mechanical equivalence condition

We combine the essential equivalence condition with the locality condition (more technical) and
the separability condition (necessary to build n-particle states) and determine

Nl,s ∩ Nl,e = Nl,s,e.

We quote the result of [10]: The transformationsN ∈ Nl,s,e which satisfy the locality, separability
and equivalence condition are given through

Nj (ψ)[a,b,F e] = Riâ
j exp i

(
b̂− 1

)
Sj · F e

j

(
R2

R1
, . . . ,

Rn

R1
, S2 − S1, . . . , Sn − S1

)
.

with the condition for the k components of F e:

k∑
j=1

R2
j

(|F e
j |2 − 1

)
= 0.

The Nl,s,e form a group.

3.4 Application for k = 1: Schrödinger equation

In the Schrödinger case we have in the configuration space R
3
x with wave function ψ = R exp is

for

Nl,s,e � N [ψ][â,̂b] = R1+iâ exp îbs · F e.

F e is a constant phase factor; we choose F e = 1. This transformation is written as (â = γ, b̂ = Λ)

N [ψ][γ,Λ] = exp i (γ lnR+ (Λ − 1) s)ψ.
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Following our construction we calculate [1] a nonlinear Schrödinger equation DS,Nψ
′ = 0 with

ψ′ = N [ψ][γ,Λ] and find

i∂tψ =
(
ν ′∆ + µ′0V + F

(0)
DG [ψ]

)
ψ,

F
(0)
DG [ψ] = µ′1 (R1 [ψ] −R4 [ψ]) − 1

2
µ′1R2 [ψ] + κ′

(
R2 [ψ] − 1

2
R5 [ψ]

)
,

R1 [ψ] =
∇ · J
ρ

, R2 [ψ] =
∆ρ
ρ
,

R3 [ψ] =
J2

ρ2
, R4 [ψ] =

J · ∇ρ
ρ

, R5 [ψ] =
(∇ρ)2
ρ2

,

where ρ = ψψ and J =1
2

(
ψ∇ψ − (∇ψ)

ψ
)
.

The coefficients in this PDO are not independent; the constraint relations are

ν ′1 =
1
Λ
ν1, µ′0 = Λµ0, µ′1 = − γ

Λ
ν1, κ′ =

γ2 + Λ2 − 1
2Λ

ν1.

Following the method mentioned in Section 2.2 we extend DS,N through a breaking of this con-
straints. An extended evolution operator (DS,N )(1)ext appears. One can continue this procedure:
Apply N ∈ Nl,s,e to D

(1)
ext one gets an evolution operator with constraints and different from D

(1)
ext.

Break this constraints and continue. The process stops after 4 steps and yields a 8-parameter
nonlinear Schrödinger equation [1] (DG equation)

i∂tψ = (ν1∆ + µ0V )ψ + iν2R2 [ψ]ψ + µ1R1 [ψ]ψ +
(
µ2 − 1

2
ν1

)
R2 [ψ]ψ

+ (µ3 + ν1)R3 [ψ]ψ + µ4R4 [ψ]ψ +
(
µ5 +

1
4
ν1

)
R5 [ψ]ψ.

The DG equation was first derived [11] with a mathematically completely different method
(representation theory of infinite dimensional Lie algebras) and motivated physically through
an analysis of geometrical details of the kinematics of the system.

3.5 Application for k = 2: Pauli equation

Here, already the special complications connected with vector-valued wave functions appear.
This is because a two component function F = (F1, F2) reduce to two equivalent constant
phase factors only for a special type of solutions (type 0); they have the property that different
(spin-) components of the wave function are not coupled through nonlinearities in the evolution
equation; only the spin matrices yields a coupling. For all other types a coupling through the
nonlinear term and the spin matrices occurs. This remains valid also for extension of the non
linear Pauli operator DP . The corresponding solutions are involved and clumsy. Even if α, β = 0,
i.e. if the term with the Pauli matrices is absent, the nonlinearities yield a coupling of the (spin-)
components which resembles in some sense an analogue for a spin-like degree of freedom. A more
detailed analysis of extensions of nonlinear Pauli equations is in preparation [12].

4 Applications for k = 4: Dirac equation

4.1 Poincaré invariance

We mentioned already that a description through (G,D, B) is in general not complete. Additional
properties of D could be physically significant for the interpretation and for an extension, e.g. the
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behaviour under space-time translations. For the Dirac operator DD the spin 1
2 representation U

of the Poincaré group is such an essential property. Hence, it is reasonable to choose N from Nl

such that DD,N has the same transformation property as DD. This is guaranteed if (local) N
transform under U as

N [Uψ] = UN [ψ]

The general form of N with the above property follows from a theorem of Fushchych and
Zhdanov [13,14] (in connection with nonlinear Dirac equation with local nonlinearities)

N (ψ)ψ = (f1 (X,Y ) + f2 (X,Y ) γ5)ψ,

f1, f2 are independent complex functions depending on the invariant quantities X = ψψ and
Y = ψγ5ψ. Such N form a group Nl,P (P for Poincaré invariance).

4.2 Consideration of separability and equivalence conditions

In this section (see also [10]) we are interested in the quantum mechanical Dirac equation.
Therefore we assume for N ∈ Nl,P also the separability and the equivalence condition. The
situation in quantum field theory needs another approach and is not related to the later con-
structions of nonlinear extensions. With the previous result it is straightforward to calculate
the corresponding transformation groups through

N2 ≡ Nl,s,P,e = Nl,s,e ∩ Nl,P .

We quote the result: Elements of N2 are labelled through a real parameter a and two real
functions φ and � depending on the invariant Z. The transformation is given through

N (ψ)[â,φ,�] ψ = exp
(
i
â

2
ln

(
ψψ

)
+ iφ (z) + � (z) γ5

)
ψ.

The corresponding group relations are involved.

4.3 Some extended nonlinear Dirac equations

The gauge like model yields with N2 and a family F2 of nonlinear Dirac equations depending
on m (mass) and the parameter and functions which label the transformations. We calculate

(γµp
µ −m)N (ψ)ψ = (γµp

µ +H2 (ψ))ψ.

For the nonlinear term H2 (ψ) we find (′ denotes the derivative; Z = X
Y ):

H2 (ψ) = (γµp
µX) i

â

2X
+ (γµp

µZ)
(
iφ′ (Z) + �′ (Z) γ5

) −m exp 2� (Z) γ5.

As explained before the families are reformulations of the linear theory with certain additional
properties (Poincaré invariance, separability, equivalence). To get new evolutions, which are
related to the linear one, we applied in Section 3.4 for k = 1 the method of gauge generalisation.
This method can be applied also to F2: The coefficient function �(Z) and �′(Z) are obviously
not independent. Break the relation between them, generalise the term proportional to α̂

2X and
get an extension of F2

H2,ex = (γµp
µX) ig (X) + (γµp

µZ) · (ik (Z) + l (Z) γ5) −m exp 2n (Z) γ5.

This family with functions g (X), k (Z), l (Z) and n (Z) is Poincaré invariant, local and separable;
the equivalence condition does not hold.
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5 Conclusions

We presented and reviewed mathematical models for physical systems which are based on
a gauge-like structure, i.e. with a description of observable through (utility) functions on the
solution manifold of a family of PDO’s. We explained some methods to extend this models, es-
pecially on extensions with nonlinear transformations on the solution manifold and a subsequent
“gauge generalisation”. Quantum mechanical evolutions of observable and states in a Hilbert
space spanned through k-vector valued wave functions have a gauge-like structure. We applied
the extension method through physically motivated nonlinear transformations which behave like
nonlinear gauge transformations. In the Schrödinger case k = 1 some mathematical and physical
details of an extended nonlinear theory and its possible relevance are known [5,8]. For systems
with k > 1, i.e. with internal degrees of freedom like spin, a nonlinearity leads to a coupling of
the internal coordinates; this kind of interaction appears as an addition to the coupling through
Pauli or Dirac matrices. For k = 2 the Pauli equation was mentioned [12]; for k = 4 quan-
tum mechanical Dirac equations were discussed and we constructed a family of nonlinear and
relativistic invariant extensions [10]. This extensions are not relevant in connection with the
relativistic quantum field theory for spin 1

2 particles.
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