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With the help of the Jordan–Wigner transformation the spin-1
2 XY chains can be reformu-

lated in terms of noninteracting spinless fermions and, as a result, many statistical-mechanics
calculations can be performed rigorously, i.e. without making any simplifying approxima-
tions. We are interested in dynamic properties of such chains (time-dependent spin cor-
relation functions, dynamic structure factors, dynamic susceptibilities) which are of great
importance for interpretation of experimental data. We have worked out a number of dy-
namic quantities explicitly as well as have performed a general analysis of the two-fermion
continua which are relevant for different dynamic quantities.

1 Introductory remarks

The spin-1
2 XY chains are known as a simplest quantum interacting system for which a lot of

statistical-mechanics calculations can be performed exactly [1]. The properties of such quantum
spin chains were studied intensively during last more than forty years and the interest in such
models may be renewed owing to a discovery of almost spin-1

2 XY chain compounds (see e.g. [2,
3]). On the other hand, such studies are interesting in their own rights since they provide a set
of reference results which may be useful for understanding the much more common Heisenberg
chains.

In what follows we consider the spin-1
2 anisotropic XY chain in a transverse field with an

additional Dzyaloshinskii–Moriya interaction directed along z-axis in spin space to elucidate
the effects of the Dzyaloshinskii–Moriya interaction on the dynamic properties of quantum spin
chains. The Dzyaloshinskii–Moriya interaction plays important role in a number of quasi-one-
dimensional materials and although it is generally small, its effects could be very important [4–6].
The Dzyaloshinskii–Moriya interaction also arises in description of the nonequlibrium steady
states of spin chains [7]. Let us recall what is known about the dynamics of the considered
quantum spin chains. The spin-1

2 XY chain with the Dzyaloshinskii–Moriya interaction was
introduced in Ref. [8] (see also Ref. [9]) and the effects of this interaction on the zz dynamics
were analyzed in Refs. [10, 11]. In particular, the zz dynamic susceptibility χzz(κ, ω) of the
spin-1

2 anisotropic XY chain with the Dzyaloshinskii–Moriya interaction was derived explicitly
for κ = 0 [10] and κ �= 0 [11]. Nevertheless, the effects of the Dzyaloshinskii–Moriya interaction
on the two-fermion excitation continuum which governs zz dynamics [12, 13] have not been
examined yet. There are notorious difficulties in calculations of the xx, xy, yx, yy dynamic
quantities (for references see [14]), and to our best knowledge the effects of the Dzyaloshinskii–
Moriya interaction on such quantities have not been reported until now. On the other hand,
we should mentioned here the recent papers on the Heisenberg chains with the Dzyaloshinskii–
Moriya interaction [15, 16]. Thus, using the symmetry arguments for the antiferromagnetic
isotropic Heisenberg (XXX) chain with the Dzyaloshinskii–Moriya term directed along z-axis
in spin space it was shown that although the Dzyaloshinskii–Moriya interaction may leave the
spectrum of the problem unchanged, it can essentially influence the spin correlations / dynamic
susceptibilities. In what follows we also derive such a conclusion in the case of the isotropic XY
(i.e. XX0) chain, however, calculated different dynamic structure factors explicitly.
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In the present paper we report the first results for the Dzyaloshinskii–Moriya effects on the
two-fermion excitation continuum, which governs the zz dynamics of spin-1

2 XY chains and on
the xx, xy, yx, yy dynamics of such chains. We start with presenting the basic formulas of
the Jordan–Wigner fermionization approach (Section 2). Then we consider the case of isotropic
XY exchange interaction. This case is essentially simpler than the case of anisotropic XY
exchange interaction since the Dzyaloshinskii–Moriya interaction can be eliminated by a spin
axes rotation. As a result, we can examine the dynamic structure factors of the chain with the
Dzyaloshinskii–Moriya interaction using the obtained earlier results for such a chain without the
Dzyaloshinskii–Moriya interaction (Section 3). Finally, we summarize our results (Section 4).

2 Dzyaloshinskii–Moriya interaction
and Jordan–Wigner fermions

In what follows we consider N → ∞ spins 1
2 arranged in a circle and governed by the Hamiltonian

H =
N∑

n=1

Ωsz
n +

N∑
n=1

(
Jxsx

nsx
n+1 + Jysy

nsy
n+1

)
+

N∑
n=1

D
(
sx
nsy

n+1 − sy
nsx

n+1

)

=
N∑

n=1

Ω
(

s+
n s−n − 1

2

)
+

1
2

N∑
n=1

((
I+ + iD

)
s+
n s−n+1

+
(
I+ − iD

)
s−n s+

n+1 + I−
(
s+
n s+

n+1 + s−n s−n+1

))
. (1)

Here Jα = 2Iα, α = x, y is the anisotropic XY exchange interaction, I± = Ix ± Iy, D is the
Dzyaloshinskii–Moriya interaction and Ω is the transverse field. It is worthwhile to note that
making use of the transformation s̃x

n = sx
n, s̃y

n = −sy
n, s̃z

n = −sz
n (a π rotation of all spins

about the x-axis) one gets again (1) with the parameters −Ω, Jx, Jy, −D, whereas a similar
transformation, s̃x

n = (−1)nsx
n, s̃y

n = (−1)nsy
n, s̃z

n = sz
n, yields (1) with the parameters Ω, −Jx,

−Jy, −D. The renumbering of sites j → N − j + 1, j = 1, 2, . . . , N in (1) yields again (1)
with the parameters Ω, Jx, Jy, −D. These symmetry remarks permit to reduce the range of
parameters for a study of the properties of the model.

We are interested in dynamics of quantum spin chain (1). For this purpose we need the two-
spin time-dependent correlation functions,

〈
sα
n(t)sβ

n+m(0)
〉
, α, β = x, y, z, the angular brackets

denote the canonical thermodynamic averaging, which yield the dynamic structure factors

Sαβ(κ, ω) =
N∑

m=1

exp (iκm)
∫ ∞

−∞
dt exp (iωt)

〈
sα
n(t)sβ

n+m(0)
〉

. (2)

Another dynamic quantity, the dynamic susceptibility χαβ(κ, ω), can be obtained from the
dynamic structure factor (2) using the fluctuation-dissipation theorem and the Kramers–Kronig
transformation.

To derive the statistical-mechanics quantities of the spin model (1) we first use the Jordan–
Wigner transformation

c+
1 = s+

1 , c1 = s−1 , c+
n = (−2sz

1) . . .
(−2sz

n−1

)
s+
n ,

cn = (−2sz
1) . . .

(−2sz
n−1

)
s−n , n = 2, . . . , N (3)
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to express the spin Hamiltonian in fermionic language

H =
N∑

n=1

Ω
(

c+
n cn − 1

2

)

+
1
2

N∑
n=1
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I+ + iD

)
c+
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(
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(
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n c+
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))
. (4)

Here the periodic boundary conditions are implied (the boundary term not important for further
calculations when N → ∞ has been omitted). Then we perform the Fourier transformation

c+
n =

1√
N

∑
κ

exp (iκn) c+
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κ
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with κ = 2π
N n and n = −N

2 ,−N
2 + 1, . . . , N

2 − 1 (if N is even) or n = −N−1
2 ,−N−1

2 + 1, . . . , N−1
2

(if N is odd) and the Bogolyubov transformation

(
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, λκ =

√
(Ω + I+ cos κ)2 + (I− sinκ)2 (6)

to get instead of (4) the final fermionic Hamiltonian
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2

)
. (7)

Here the prime denotes that κ varies (when N → ∞) from 0 to π and the elementary excitations
energies are given by

Λκ = D sinκ + λκ = D sinκ +
√

(Ω + I+ cos κ)2 + (I− sinκ)2 �= Λ−κ. (8)

It should be noted here that the Bogolyubov transformation (6) does not depend on the
Dzyaloshinskii–Moriya interaction D.
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3 Isotropic XY chain

The isotropic case Jx = Jy = J is essentially simpler than a general anisotropic case Jx �= Jy

since the Dzyaloshinskii–Moriya interaction can be eliminated from the Hamiltonian (1) by
a simple spin axes rotation (see, e.g. [4]). Really, introducing new spin variables

s̃x
n = sx

n cos φn + sy
n sinφn, s̃y

n = −sx
n sinφn + sy

n cos φn, s̃z
n = sz

n,

φn = (n − 1)ϕ, tan ϕ =
D

J
(9)

one finds that

H =
N∑
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Ωsz
n +

N∑
n=1

J
(
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nsy

n+1

)
+
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D
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)

=
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n +
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√
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(
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ns̃y

n+1

)
. (10)

Obviously, the thermodynamic properties of the model with Dzyaloshinskii–Moriya interac-
tion are the same as of the model without such interaction, but with renormalized isotropic
exchange interaction |J | → √

J2 + D2. As a result, the Dzyaloshinskii–Moriya interaction can-
not be revealed from the measurements of thermodynamic quantities. Let us pass to the dynamic
quantities.

3.1 zz dynamics and two-fermion excitation continuum

The spin rotations (9) do not effect the z spin component and therefore〈
sz
n(t)sz

n+m(0)
〉∣∣

J,D
=

〈
s̃z
n(t)s̃z

n+m(0)
〉∣∣

sgn(J)
√

J2+D2,0
. (11)

As a result we may use the long-known results for the zz dynamics (see, e.g. [12, 13])

Szz(κ, ω)|J,D = Szz(κ, ω)|sgn(J)
√

J2+D2,0

=
∫ π

−π
dκ1nκ1 (1 − nκ1−κ) δ (ω + Λκ1 − Λκ1−κ) . (12)

Here Λκ = Ω + sgn(J)
√

J2 + D2 cos κ is the elementary excitation energy and nκ = 1
1+exp(βΛκ)

is the Fermi function. From Refs. [12,13] we know that the zz dynamic structure factor (12) is
governed by the two-fermion excitation continuum. The lower, middle, and upper boundaries
of the continuum in the plane wavevector κ – frequency ω are given by

ωl√
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2
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2
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|κ|
2
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( |κ|

2
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)
, if 0 ≤ |κ| ≤ π − 2α,

2 sin
|κ|
2

, if π − 2α ≤ |κ| ≤ π,

(15)
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respectively; here α = arccos Ω√
J2+D2

. The soft modes (i.e. the values of κ at which ωl = 0)
occur at |κ0| = 0, 2α. The zz dynamic structure factor may exhibit a one-dimensional Van
Hove’s singularity (i.e. Szz(κ, ω = ωs − 0) ∼ 1√

ωs−ω
) while approaching the curve

ωs√
J2 + D2

= 2 sin
|κ|
2

. (16)

As temperature increases, the lower boundary of the continuum smears out, i.e. ωl√
J2+D2

= 0, and

the upper boundary becomes ωu√
J2+D2

= 2 sin |κ|
2 . To conclude, the zz dynamics in the presence of

the Dzyaloshinskii–Moriya interaction remains as for the chain without such interaction but with
renormalized isotropic exchange interaction |J | → √

J2 + D2. As a result the Dzyaloshinskii–
Moriya interaction does not manifest itself in the zz dynamic quantities.

3.2 xx and xy dynamics

Let us pass to the remaining spin correlation functions. Employing equation (9) one finds〈
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n(t)sx
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〉∣∣
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n+m

〉∣∣
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√
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and similar formulas for
〈
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,
〈
sy
n(t)sx

n+m

〉∣∣
J,D

and
〈
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the relations
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one gets
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1
2

(
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√
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√
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+ i
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√
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√
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1
2
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We may use now the results available for the isotropic XY chain without the Dzyaloshin-
skii–Moriya interaction to follow the effects of the latter interaction on xx (yy) and xy (yx)
dynamics. We start from the exact analytical result for zero temperature β = ∞ and strong
fields Ω >

√
J2 + D2 [17, 14]. The ground-state is completely polarized |GSs〉 =

∏
n | ↓n〉 (in

spin language) or completely empty cκ |GSc〉 = 0 (in fermionic language). Therefore, a crucial
simplification occurs

s+
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1√
N

∑
κ

exp (iκm) c+
κ |GSc〉 , s−m |GSs〉 = 0. (20)

As a result〈
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=
1
4
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〉
=

1
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∑
κ
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(
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√
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)
t
)

, (21)

〈
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n+m

〉∣∣
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√
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=
1
4i

〈
GSs|s−n (t)s+
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〉
= −i

〈
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n+m

〉∣∣
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√
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, (22)
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Figure 1. Sxx(κ, ω) for Ω = 0.001, J = −1, D = 0 (left panel), D = 1 (right panel), β = 20.

Figure 2. Sxx(κ, ω) for Ω = 0.5, J = −1, D = 0 (left panel), D = 1 (right panel), β = 20.

and therefore

Sxx(κ, ω)|J,D = i Sxy(κ, ω)|J,D =
π

2
δ
(
ω − Ω − sgn(J)

√
J2 + D2 cos (κ + ϕ)

)
. (23)

If Ω < −√
J2 + D2 instead of (20) one has

s+
m |GSs〉 = 0, s−m |GSs〉 = (−1)m cm |GSc〉 =

1√
N

∑
κ

exp (−i (κ + π) m) cκ |GSc〉 . (24)

As a result〈
sx
n(t)sx

n+m

〉∣∣
sgn(J)

√
J2+D2,0

= −i
〈
sx
n(t)sy

n+m

〉∣∣
sgn(J)

√
J2+D2,0

=
1
4

〈
GSs|s+

n (t)s−n+m|GSs

〉
=

1
4N

∑
κ

exp
(
−i (κ + π) m + i

(
Ω + sgn(J)

√
J2 + D2 cos κ

)
t
)

, (25)

and therefore

Sxx(κ, ω)|J,D = −i Sxy(κ, ω)|J,D =
π

2
δ
(
ω + Ω − sgn(J)

√
J2 + D2 cos (κ − ϕ)

)
. (26)

Another exact analytical results may be obtained for infinite temperature β = 0.
Let us pass to the case of finite temperatures 0 < β < ∞ (and 0 ≤ Ω <

√
J2 + D2).

Unfortunately, in this case we can calculate the dynamic structure factors Sxx(κ, ω), Sxy(κ, ω)
of the isotropic XY chain which enter (18), (19) only numerically. The xx dynamic structure
factor (grey-scale plots) of the finite-size (N = 400) isotropic XY chain (J = −1) with the
Dzyaloshinskii–Moriya interaction at low temperature (β = 20) for different strengths of the
transverse field Ω = 0.001 and Ω = 0.5 can be seen in Fig. 1 and Fig. 2, respectively.

From the earlier studies for isotropic XY chains [14] we know that the xx dynamic structure
factor at low temperatures is concentrated in the plane wavevector κ – frequency ω roughly along
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the boundaries of the two-fermion continuum (13), (14), (15) (left panels in Figs. 1 and 2).
If the Dzyaloshinskii–Moriya interaction is present it is not true any more (right panels in
Figs. 1 and 2). The xx dynamic structure factor is concentrated mostly along the curves which
correspond to the boundaries of two two-fermion continuum (13), (14), (15) which are shifted
by ±ϕ along the wavevector axis κ and are renormalized |J | → √

J2 + D2 along the frequency
axis ω. Thus, the correspondence between the xx and zz dynamic quantities becomes violated.
From Figs. 1, 2 we can also see arising of the asymmetry in Sxx(κ, ω) with respect to the change
κ → −κ owing to the Dzyaloshinskii–Moriya interaction as the transverse field deviates from
zero. As Ω increases (at fixed D), a redistribution of a weight of Sxx(κ, ω) between “left”
and “right” two-fermion continua takes place until the “left” one completely disappears as Ω
exceeds

√
J2 + D2. (Obviously, we should change “left” to “right” and vice versa when Ω

increases its value being negative.) It is important to note that the soft modes of “left” and
“right” continua originating from the soft mode of the original continuum at κ = 0 occur at
κ = ±ϕ and they are field independent; they can be used for determining of the value of the
Dzyaloshinskii–Moriya interaction in the corresponding compounds. For electron-spin resonance
experiments the frequency profiles of Sxx(κ, ω) at κ = 0 and κ = π are relevant [18]. We see
that both profiles change drastically if the Dzyaloshinskii–Moriya interaction is present. For
example, the zero-frequency peak at κ = 0, which is relevant for the ferromagnetic case, moves
towards higher frequency and its position is determined by the value of the Dzyaloshinskii–
Moriya interaction. Similarly, the Dzyaloshinskii–Moriya interaction spectacularly changes the
frequency profile at κ = π, which is relevant for the antiferromagnetic case. Obviously, these
effects can be used for experimental determining of the value of the Dzyaloshinskii–Moriya
interaction in the corresponding compounds.

4 Concluding remarks

To summarize, we have studied the xx (yy) and xy (yx) dynamic structure factors of the
spin-1

2 isotropic XY chain with the Dzyaloshinskii–Moriya interaction and have demonstrated
how the relation between these quantities and the zz dynamic structure factor is modified due
to the Dzyaloshinskii–Moriya interaction. We have discussed how the Dzyaloshinskii–Moriya
interaction may manifest itself in the dynamic experiments.
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