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Quasi-exactly solvable one-dimensional Schrödinger equations can be specified in order to
exhibit supplementary analytic eigenstates. While the usual solutions are preserved by the
sl(2,R) generators, the additional ones are stabilized at the level of the universal enveloping
algebra of this Lie structure. We discuss the square-integrability, the orthogonality of these
supplementary solutions as well as the reality of the corresponding energies.

1 Introduction

Since Schrödinger wrote his famous equation in 1926, there has been a constant effort to find
different methods for solving it. The present stage of the problem is that one-dimensional
time-independent Schrödinger equations can be divided into three categories according to their
degree of solvability. There are the exactly solvable ones for which the whole set of eigenvalues
and eigenstates can be analytically determined, the non solvable ones which require a numerical
or a perturbative treatment and the intermediate category, the quasi-exactly solvable (Q.E.S.)
ones [1], for which a finite number of analytic solutions are known. The first explicit example
of Q.E.S. potentials was found by Razavy [2].

Exactly solvable as well as most of the Q.E.S. Schrödinger equations are built up from linear
and quadratic combinations of the sl(2,R) generators [3]. For example, the Razavy potential
illustrates this statement. What we want to emphasize here is that we can constrain in a specific
way these combinations [4, 5] so that supplementary analytic eigenstates (and energies) arise.
More precisely, the usual solutions are preserved by each of the sl(2,R) generators while the
supplementary ones are stabilized by adequate elements of the universal enveloping algebra of
sl(2,R). Moreover, the whole set of eigenstates exhibit interesting physical properties and call
in question the self-adjointness of the corresponding Hamiltonians.

In Section 2, we prove how to construct a Q.E.S. operator such that it admits supplementary
eigenstates with respect to the standard ones. We illustrate these developments on a Q.E.S.
interaction generalizing the Razavy potential in Section 3. Finally, we discuss in Section 4 the
square-integrability, the orthogonality of these supplementary solutions, as well as the reality of
the corresponding energies.

2 Supplementary solutions to Q.E.S. equations

It is well known [3] that the (n+ 1)-dimensional space of monomials

V1 = {1, y, . . . , yn}, (1)

where n is a positive integer, is preserved by the differential operators

j+ = −y2 d

dy
+ ny, (2)
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j0 = y
d

dy
− n

2
, (3)

j− =
d

dy
, (4)

in the sense that

j+y
k = (n− k) yk+1, j0y

k =
(
k − n

2

)
yk, j−yk = k yk−1, k = 0, 1, . . . , n.

The operators (2)–(4) generate the sl(2,R) Lie algebra characterized by the commutation rela-
tions

[j0, j±] = ±j±, [j+, j−] = 2j0,

as it can be checked directly.
Moreover, any function of the sl(2,R) generators will still keep the space V1 invariant. In

particular, being interested in the Schrödinger second-order differential operator, we consider
the most general operator preserving V1 i.e.

T = C+0j+j0 + C00j
2
0 + C0−j0j− + C+j+ + C0j0 + C−j− + C∗. (5)

In this expression, we have suppressed, without losing generality, the term C+−j+j− due to the
fact that the sl(2,R) Casimir operator is given by

C = j+j− + j20 − j0,

as well as the two terms C++j
2
+ and C−−j2−, since it has been proved in [6] that these terms are

redundant with respect to the canonical forms.
The operator (5) is constructed from three operators of different gradings

J+ ≡ j+(C+0j0 + C+), J− ≡ (C0−j0 + C−)j−

of respective gradings +1 and −1 and the diagonal (i.e. of grading 0)

J0 ≡ C00j
2
0 + C0j0 + C∗.

Let us now ask for supplementary elements, say λ0(y), λ1(y), . . . , λN−n−1(y) with N a positive
integer such that N ≥ n + 1, to be preserved by T . In other words, we do not limit ourselves
to the standard Q.E.S. space V1 but we add a (N − n)-dimensional space which we require in
direct sum with V1 without loss of generality (the dimension being adaptable). Following the
gradings in (5), we thus ask for

J+λr(y) ∼ λr+1(y), r = 0, 1, . . . , N − n− 2; J+λN−n−1(y) = 0,
J−λr(y) ∼ λr−1(y), r = 1, 2, . . . , N − n− 1; J−λ0(y) = 0.

These relations constrain the reals C+ and C− as well as the elements λr(y) (r = 0, 1, . . . , N −
n− 1) in the following way

C+ =
(

1 +
3n
2

−N − a

)
C+0, C− =

(
1 +

n

2
− a

)
C0−,

λr(y) = ya+r, r = 0, 1, . . . , N − n− 1,

where a is an arbitrary real number. Consequently, the operator

T = C+0j+

(
j0 + 1 +

3n
2

−N − a

)
+ C0−(j0 + 1 +

n

2
− a)j− + C00j

2
0 + C0j0 + C∗ (6)
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does preserve the (N + 1)-dimensional space

V = V1 ⊕ V2,

where V1 is given in equation (1) while V2 is

V2 = {ya, ya+1, . . . , ya+N−n−1}.

With account of equations (2)–(4), the operator (6) simply reads

T = F (y)
d2

dy2
+G(y)

d

dy
+H(y) (7)

with

F (y) = −C+0y
3 + C00y

2 + C0−y,

G(y) = C+0(N + a− 2)y2 + (C00(1 − n) + C0)y + C0−(1 − a),

H(y) = C+0(1 + n−N − a)n y +
n2

4
C00 − n

2
C0 + C∗. (8)

The usual way [3] for transforming the operator (7) into a Schrödinger one

T → H = − d2

dx2
+ V (x)

is to perform the change of variables

x ≡ f(y) ≡
∫ √

−1
F (y)

dy (9)

as well as the “gauge” transformation

Λ(x) ≡ exp

{
1
2

∫ y(x)

f ′(y)
[
F (y)f ′′(y) +G(y)f ′(y)

]
dy

}
.

The potential V (x) is then given by

V (x) =
{
H(y) +

1
Λ(x)

dΛ
dx

[
F (y)f ′′(y) +G(y)f ′(y)

] − 1
Λ(x)

d2Λ
dx2

}
y→y(x)

.

3 An example

The change of variables (9) together with (8) leads to an elliptic function technically difficult to
handle. We avoid this difficulty by choosing

C+0 = −1, C00 = 2, C0− = 1

which implies that

x = −
(
tanh

y

2

)2
.

We also introduce the new parameter a1

a1 ≡ 2(N − n) + C0
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and fix C∗ as

C∗ =
1
2
(n−N)(a1 + n−N)

for esthetical reasons. In this case, we have

Λ(x) = exp
(

1
2
(2a+ a1 − 1 −N)

(
cosh

x

2

)2
)(

cosh
x

2

)−N (
tanh

x

2

)a− 1
2

and

V (x) =
1
32

{
7 + 28a2 − a1(6 + a1) + 32n(n+ 1) − 2N − 2N(3a1 + 16n) + 15N2

+ 4a(−7 + 3a1 − 8n+N) − 8(N + 1)(2a+ a1 − 1 −N) coshx

+ (2a+ a1 − 1 −N)2 cosh 2x− (8(N − 2n+ a− 2)(N − 2n+ a) + 6)
1

(cosh x
2 )2

+ 2(4a2 − 1)
1

(sinh x
2 )2

}
. (10)

Let us first point out some characteristics of this Q.E.S. potential.
The behavior near the origin is

V (x→ 0) ∼
(
a2 − 1

4

)
1
x2
. (11)

The coefficient in front of 1
x2 implies that the potential is attractive and unbounded at the origin

if a ∈]− 1
2 ,

1
2 [ and repulsive otherwise. The cases a = ±1

2 are particular since the potential is not
singular anymore. We recover here the Razavy interaction [2]. Up to these values, the problem
is thus restricted to a half-line. Moreover equation (11) is such that the particle does not fall on
the center [7]. Let us also notice that

lim
x→±∞V (x) = +∞,

a physical eigenstate will thus have to vanish at infinity.
Second we turn to the eigenstates which are given by

ψn(x) = exp
(
−1

2
(2a+ a1 − 1 −N)

(
cosh

x

2

)2
)

×
(
cosh

x

2

)N (
tanh

x

2

) 1
2
−a
Pn

((
tanh

x

2

)2
)
,

ψ̃N−n−1(x) = exp
(
−1

2
(2a+ a1 − 1 −N)

(
cosh

x

2

)2
)

×
(
cosh

x

2

)N (
tanh

x

2

) 1
2
+a
P̃N−n−1

((
tanh

x

2

)2
)
,

where Pn(u) and P̃N−n−1(u) are polynomials of respective orders n and (N − n− 1) of the real
variable u. The untilded solutions are those belonging to the standard Q.E.S. space V1 while
the tilded ones refer to the additional space V2.

In what concerns the energies, they can be obtained as solutions of algebraic equations of
degree N + 1. For example, if N = 3 and n = 1, they are

E± =
5
2
− a1 ± 1

2

√
a2

1 − 8a1 − 4a2 + 20 (12)
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and

Ẽ± =
5
2
− a1 − 4a+ 2a2 + aa1 ± 1

2

√
a2

1 − 8a1 + 8aa1 + 12a2 − 32a+ 20 (13)

corresponding to the respective eigenstates

ψ±(x) ∼ exp
(
−1

2
(2a+ a1 − 4)

(
cosh

x

2

)2
)(

cosh
x

2

)3 (
tanh

x

2

) 1
2
−a

×
[
(a− 1) +

(
E± +

3
2
(a1 − 3)

)(
tanh

x

2

)2
]
, (14)

and

ψ̃±(x) ∼ exp
(
−1

2
(2a+ a1 − 4)

(
cosh

x

2

)2
)(

cosh
x

2

)3 (
tanh

x

2

) 1
2
+a

×
[
(a+ 1) −

(
Ẽ± +

1
2
(3 − 2a)(2a+ a1 − 3)

) (
tanh

x

2

)2
]
. (15)

4 Real energies and self-adjointness

A look at equations (12), (13) shows that a particular choice of a and a1 can lead to complex
energies despite of the fact that the potential (10) is always real. This situation is the opposite
of the one encountered in [8] where complex potentials lead to real spectra.

We thus have to analyze the self-adjointness of the kinetic term. This point is usually left
aside because the radial eigenstates traditionally vanish at the origin. This is no longer true
here (see equations (14), (15) for an arbitrary a) and we thus have to come back to the behavior
of the functions (14), (15) at the origin.

Let us start with

Hψ = Eψψ, Hφ = Eφφ.

Multiplying both sides of these equations by φ† and ψ†, respectively, taking the conjugate of
the resulting second equation and subtracting them, we obtain after integration and for a real
potential, the standard relationship(

ψ
d

dx
φ† − φ†

d

dx
ψ

) ∣∣∣x2

x1

= (Eψ − Ēφ)
∫ x2

x1

φ†ψ dx. (16)

The behavior of the functions (14), (15) at the origin is

ψ(x→ 0) ∼ Aψx
−δ +Bψx

2−δ + · · · , (17)

where Aψ, Bψ, . . . are expansion coefficients while

δ = −1
2

+ a or δ = −1
2
− a

if the spaces V1 or V2 are under study, respectively. Inserting (17) in (16), we obtain

2(AψB̄φ −BψĀφ)
[
x1−2δ +O(x3−2δ)

]
|x→0= (Eψ − Ēφ)

∫ +∞

0
φ†ψ dx. (18)

If the functions ψ and φ belong to the same space, either V1 or V2, equation (18) proves that
these functions are orthogonal if

1 − 2δ > 0,
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i.e.

a < 1 for V1 and a > −1 for V2. (19)

Moreover, taking ψ = φ, we deduce from equation (18) that the energies are real. On the other
hand, if 1 − 2δ ≤ 0, neither the orthogonality nor the reality of the energies can be guaranteed.
Note that the condition 1−2δ > 0 is also the one for the eigenstates (14), (15) (see equation (17))
to be square-integrable at the origin. Besides these eigenstates are square-integrable at infinity
if

a1 + 2a− 4 > 0. (20)

The constraints (19), (20) thus fix the domains of a and a1 in order to ensure the reality of the
energies as well as the physical relevance of the eigenstates. These constraints are for example
met with a = 1

4 , a1 = 4. In this case, we have

E± = −3
2
± 1

4

√
15, Ẽ± = −11

8
± 1

4

√
19

while

ψ± = exp
(
−1

4

(
cosh

x

2

)2
)(

cosh
x

2

)3 (
tanh

x

2

) 1
4

(
3 ±

√
15

(
tanh

x

2

)2
)
, (21)

ψ̃± = exp
(
−1

4

(
cosh

x

2

)2
)

cosh
x

2

(
tanh

x

2

) 3
4
(
7 ±

√
19 +

(
3 ∓

√
19

)
coshx

)
. (22)

Among these eigenstates, all vanishing at the origin, two (ψ+ and ψ̃+) have one node while the
two others do not vanish on R+

0 . Another particular case is a = 1
2 , a1 = 4. This implies

E± = −3
2
± 1

2

√
3, Ẽ± = −1 ± 1

2

√
7

and

ψ± = exp
(
−1

2

(
cosh

x

2

)2
)(

cosh
x

2

)3
(

1 ±
√

3
(
tanh

x

2

)2
)
, (23)

ψ̃± = exp
(
−1

2

(
cosh

x

2

)2
)

sinh
x

2

(
5 ±

√
7 +

(
1 ∓

√
7
)

coshx
)
. (24)

As already noticed, there is no more singularity so that here x belongs to the whole line.
The number of nodes is 0, 1, 2 and 3 corresponding to the eigenstates ψ−, ψ̃−, ψ+ and ψ̃+,
respectively. Finally, we choose a = 3

4 , a1 = 4. We obtain

E± = −3
2
± 1

4

√
7, Ẽ± = −3

8
± 1

4

√
43

and

ψ± = exp
(
−3

4

(
cosh

x

2

)2
)(

cosh
x

2

)3 (
tanh

x

2

)− 1
4

(
1 ∓

√
7

(
tanh

x

2

)2
)
, (25)

ψ̃± = exp
(
−3

4

(
cosh

x

2

)2
)

cosh
x

2

(
tanh

x

2

) 5
4
(
13 ±

√
43 +

(
1 ∓

√
43

)
coshx

)
. (26)

The number of respective nodes is kept with respect to the context a = 1
4 , while the eigenstates

have a different behavior at the origin: If the tilded functions still vanish when x→ 0, ψ± goes
to ∓∞ at the origin.
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In each of these three cases, beside the reality of the energies, we confirm the square-
integrability of each eigenstate (on R+

0 or R) as well as their orthogonality within the same
subspace (ψ± are orthogonal, ψ̃±, too).

Let us now take a look at equation (18) when ψ and φ belong to different subspaces, say ψ
to V1 and φ to V2. We have

2aAψĀφ
[
1 +O

(
x2

)] |x→0= (Eψ − Ēφ)
∫ +∞

0
φ†ψ dx (27)

It is clear that the left-hand side of the relations (27) is not vanishing. Hence the eigenstates
of two different subspaces are not orthogonal in general. This can be checked directly for the
states (21), (22) as well as for the ones in equations (25), (26). However, the situation is special
when a = ±1

2 . We have δ = 0 either for the eigenstates lying in V1 or for the ones of V2. This
means that the eigenstate at the origin goes to a constant in one case and is vanishing in the
other case. One of the subspaces contains the even eigenstates and the second subspace contains
the odd ones. These subspaces are now orthogonal to each other. All these statements are
confirmed through equations (23), (24).
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