Some Applications of a Lorentz-Like Formulation of Galilean Invariance

Marc DE MONTIGNY ${ }^{\dagger}$, Faqir KHANNA ${ }^{\ddagger}$ and Ademir SANTANA §
${ }^{\dagger}$ Faculté Saint-Jean, University of Alberta, Edmonton, Alberta, T6C 4G9, Canada
E-mail: montigny@phys.ualberta.ca
\ddagger Department of Physics, University of Alberta, Edmonton, Alberta, T6J 2J1, Canada
E-mail: khanna@phys.ualberta.ca
§ Instituto de Fisica, Universidade Federal da Bahia, Salvador, Bahia, 40210-340, Brazil
E-mail: santana@ufba.br

Abstract

We describe a metric formulation of Galilean covariance in $4+1$ dimensions. As a first example, we recover the two Galilean limits of electromagnetism investigated previously by Le Bellac and Lévy-Leblond. Then we describe the field theoretical formulation of some fluid and superfluid models. Finally the non-relativistic Bhabha equations for spin 0 and 1 particles, and the Dirac equation for spin $1 / 2$ are considered.

1 Introduction

Almost one century has elapsed since Galilei relativity was superseded by Einstein's theory as a realistic framework for describing high velocity phenomena. Yet there exists a wealth of systems at low-energy, particularly in condensed matter physics and nuclear physics, where any new method involving Galilean invariance is likely to be useful. In fact, in most many-body theories, Galilean invariance simply cannot be ignored. Moreover, contrary to popular belief, the mathematical structure of the Galilei group is more intricate than that of the Lorentz group. A case in point is that the representation theory of the Galilei group was thoroughly investigated nearly twenty years after its relativistic counterpart. The general program discussed here consists of a metric formulation of Galilei-invariance, so that one can use Galilean covariance, tensor analysis, etc. as a guiding principle to devise many-body models. Essentially, we exploit the well-known fact that the central extension of the Galilei algebra in $3+1$ dimensions is a subalgebra of the Poincaré algebra in $4+1$ dimensions. Hereafter we summarize the articles [1-5], where further details can be found. Our geometrical approach follows the articles of Takahashi and his collaborators [6]. Other five-dimensional formalisms can be found in $[7,8]$.

We define a Galilei-vector (\boldsymbol{x}, t, s) such that a boost acts on it as

$$
\begin{align*}
\boldsymbol{x}^{\prime} & =\boldsymbol{x}-\boldsymbol{V} t, \quad t^{\prime}=t, \\
s^{\prime} & =s-\boldsymbol{V} \cdot \boldsymbol{x}+\frac{1}{2} \boldsymbol{V}^{2} t, \tag{1}
\end{align*}
$$

with relative velocity \boldsymbol{V}. Note that the units of s are $\frac{L^{2}}{T}$. The scalar product,

$$
\begin{equation*}
(A \mid B)=A^{\mu} B_{\mu} \equiv \boldsymbol{A} \cdot \boldsymbol{B}-A_{4} B_{5}-A_{5} B_{4}, \tag{2}
\end{equation*}
$$

of two Galilei-vectors A and B is invariant under transformation (1). This amounts to saying that we work on the light front in $4+1$ dimensions. The need for an additional coordinate may be explained in different ways: (1) as the phase required by the quantum wave function in order to keep the Schrödinger equation Galilei-invariant; (2) as a term added to the classical
free Lagrangian so that it becomes Galilei-invariant rather than quasi-invariant; (3) as noted in [8], it may be understood as a control parameter that makes up for lack of a signal with a universal velocity. We expect this approach to be useful in field theories. However, we do not claim that any Galilei-invariant theory can be expressed in this way. Neither do we suggest that this formalism will lead to the respective non-relativistic limits (for instance, the Chaplygin gas model is obtained from the Nambu-Goto action [9]).

Equation (1) can be written as

$$
\begin{equation*}
x^{\mu^{\prime}}=\Lambda^{\mu^{\prime}}{ }_{\nu}^{\nu}, \tag{3}
\end{equation*}
$$

where $\Lambda^{\mu^{\prime}}{ }_{\nu}$ is the $\left(\mu^{\prime} \nu\right)$-entry, or

$$
\left(\begin{array}{l}
x^{1^{\prime}} \tag{4}\\
x^{2^{\prime}} \\
x^{3^{\prime}} \\
x^{4^{\prime}} \\
x^{5^{\prime}}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & -V_{1} & 0 \\
0 & 1 & 0 & -V_{2} & 0 \\
0 & 0 & 1 & -V_{3} & 0 \\
0 & 0 & 0 & 1 & 0 \\
-V_{1} & -V_{2} & -V_{3} & \frac{1}{2} \boldsymbol{V}^{2} & 1
\end{array}\right)\left(\begin{array}{l}
x^{1} \\
x^{2} \\
x^{3} \\
x^{4} \\
x^{5}
\end{array}\right) .
$$

For a Galilei-oneform we have:

$$
\begin{equation*}
x_{\mu^{\prime}}=\Lambda^{\nu}{ }_{\mu^{\prime}} x_{\nu}, \tag{5}
\end{equation*}
$$

where now $\Lambda^{\nu}{ }_{\mu^{\prime}}$ is the $\left(\nu \mu^{\prime}\right)$-entry, with $\Lambda^{\nu}{ }_{\mu^{\prime}} x_{\nu}$ as in equation (4) with the change $V_{j} \rightarrow-V_{j}$.
Throughout this paper, except in Section 2, we utilize the Galilei-vectors $\left(x^{1}, \ldots, x^{5}\right)$ with each component having units of length:

$$
\begin{equation*}
\left(x^{1}, \ldots, x^{5}\right)=\left(\boldsymbol{x}, v t, \frac{s}{v}\right) \tag{6}
\end{equation*}
$$

where v has units of velocity. For a real field $\tilde{\phi}$, the projection is defined as

$$
\begin{equation*}
\tilde{\phi}(x) \equiv \phi(\boldsymbol{x}, t)+a_{0} s, \tag{7}
\end{equation*}
$$

with a_{0} a dimensionless constant. For a complex field $\tilde{\psi}$ we use the definition:

$$
\begin{equation*}
\tilde{\psi}(x) \equiv e^{i a_{0} m s} \psi(\boldsymbol{x}, t), \tag{8}
\end{equation*}
$$

with natural units, such that $\hbar=1$. We use $a_{0}=+1$ or -1 .
If we use $(\boldsymbol{x}, t) \rightarrow x^{\mu}=(\boldsymbol{x}, t, s)$, then using the five-momentum $p_{\mu} \equiv-i \partial_{\mu}=\left(-i \boldsymbol{\nabla},-i \partial_{t}\right.$, $\left.-i \partial_{s}\right)$ with $E=i \partial_{t}$ and $m=i \partial_{s}$, we obtain $p_{\mu}=(\boldsymbol{p},-E,-m)$ and $p^{\mu}=g^{\mu \nu} p_{\nu}=(\boldsymbol{p}, m, E)$. Thereupon the mass does not enter as an external parameter, but rather as a remnant of the fifth component of the particle's momentum, starting from an apparently massless theory in $4+1$ dimensions!

2 Galilean electromagnetism

Here we recover the two 'Galilean limits' of electromagnetism obtained thirty years ago by Le Bellac and Lévy-Leblond [10].

The Lorentz transformations of a four-vector $\left(u^{0}, \boldsymbol{u}\right)$,

$$
\begin{align*}
& u^{0 \prime}=\gamma\left(u^{0}-\frac{1}{c} \boldsymbol{V} \cdot \boldsymbol{u}\right), \\
& \boldsymbol{u}^{\prime}=\boldsymbol{u}-\gamma \frac{\boldsymbol{V}}{c} u^{0}+\frac{\boldsymbol{V}}{\boldsymbol{V}^{2}}(\gamma-1) \boldsymbol{V} \cdot \boldsymbol{u}, \tag{9}
\end{align*}
$$

where $\gamma \equiv \frac{1}{\sqrt{1-\boldsymbol{V}^{2} / \boldsymbol{c}^{2}}}$, admits two well defined Galilean limits [10]. One is related to largely timelike vectors, with $u^{0 \prime}=u^{0}$ and $\boldsymbol{u}^{\prime}=\boldsymbol{u}-\frac{1}{c} \boldsymbol{V} u^{0}$, and corresponds to the 'electric' limit. The second limit is for largely spacelike vectors, with $u^{0 \prime}=u^{0}-\frac{1}{c} \boldsymbol{V} \cdot \boldsymbol{u}$ and $\boldsymbol{u}^{\prime}=\boldsymbol{u}$, and is associated with the 'magnetic' limit. Throughout this section, we define the embedding of the Newtonian space-time into the de Sitter space by

$$
\begin{equation*}
(\boldsymbol{x}, t) \hookrightarrow x=(\boldsymbol{x}, t, 0), \tag{10}
\end{equation*}
$$

so that $\partial_{k}=\nabla_{k}, \partial_{4}=\partial_{t}$ and $\partial_{5}=0$. The electric and magnetic limits will be obtained by considering two particular embeddings of the five-potential.

From equation (5), we find that

$$
\begin{align*}
& \boldsymbol{A}^{\prime}=\boldsymbol{A}+\boldsymbol{V} A_{5}, \\
& A_{4^{\prime}}=A_{4}+\boldsymbol{V} \cdot \boldsymbol{A}+\frac{1}{2} \boldsymbol{V}^{2} A_{5}, \quad A_{5^{\prime}}=A_{5} . \tag{11}
\end{align*}
$$

Let us denote the components of the five-dimensional electromagnetic antisymmetric tensor $F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ as

$$
F_{\mu \nu}=\left(\begin{array}{ccccc}
0 & b_{3} & -b_{2} & c_{1} & d_{1} \tag{12}\\
-b_{3} & 0 & b_{1} & c_{2} & d_{2} \\
b_{2} & -b_{1} & 0 & c_{3} & d_{3} \\
-c_{1} & -c_{2} & -c_{3} & 0 & a \\
-d_{1} & -d_{2} & -d_{3} & -a & 0
\end{array}\right) .
$$

They are expressed in terms of the five-potential A as

$$
\begin{align*}
& \boldsymbol{b}=\boldsymbol{\nabla} \times \boldsymbol{A}, \quad \boldsymbol{c}=\boldsymbol{\nabla} A_{4}-\partial_{4} \boldsymbol{A}, \\
& \boldsymbol{d}=\boldsymbol{\nabla} A_{5}-\partial_{5} \boldsymbol{A}, \quad a=\partial_{4} A_{5}-\partial_{5} A_{4} . \tag{13}
\end{align*}
$$

The external five-current, $j_{\mu}=\left(\boldsymbol{j}, j_{4}, j_{5}\right)$, also transforms as a five-vector and one writes the continuity equation as

$$
\begin{equation*}
\partial^{\mu} j_{\mu}=\boldsymbol{\nabla} \cdot \boldsymbol{j}-\partial_{4} j_{5}-\partial_{5} j_{4}=0 \tag{14}
\end{equation*}
$$

In terms of the components in equation (12), the Maxwell equations,

$$
\begin{equation*}
\partial_{\mu} F_{\alpha \beta}+\partial_{\alpha} F_{\beta \mu}+\partial_{\beta} F_{\mu \alpha}=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{\nu} F^{\mu \nu}=j^{\mu} \tag{16}
\end{equation*}
$$

become

$$
\begin{align*}
& \boldsymbol{\nabla} \cdot \boldsymbol{b}=0, \quad \boldsymbol{\nabla} \times \boldsymbol{c}+\partial_{4} \boldsymbol{b}=\mathbf{0} \\
& \boldsymbol{\nabla} \times \boldsymbol{d}+\partial_{5} \boldsymbol{b}=\mathbf{0}, \quad \nabla a-\partial_{4} \boldsymbol{d}+\partial_{5} \boldsymbol{c}=\mathbf{0} \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{b}-\partial_{5} \boldsymbol{c}-\partial_{4} \boldsymbol{d}=\boldsymbol{j}, \quad \boldsymbol{\nabla} \cdot \boldsymbol{c}-\partial_{4} a=-j_{4}, \quad \boldsymbol{\nabla} \cdot \boldsymbol{d}+\partial_{5} a=-j_{5}, \tag{18}
\end{equation*}
$$

respectively. Finally, the electromagnetic tensor transforms like $F_{\mu^{\prime} \nu^{\prime}}=\Lambda_{\mu^{\prime}}{ }^{\alpha} \Lambda_{\nu^{\prime}}{ }^{\beta} F_{\alpha \beta}$, so that its components transform as

$$
\begin{align*}
& a^{\prime}=a+\boldsymbol{V} \cdot \boldsymbol{d}, \quad \boldsymbol{b}^{\prime}=\boldsymbol{b}-\boldsymbol{V} \times \boldsymbol{d}, \\
& \boldsymbol{c}^{\prime}=\boldsymbol{c}+\boldsymbol{V} \times \boldsymbol{b}+\frac{1}{2} \boldsymbol{V}^{2} \boldsymbol{d}-a \boldsymbol{V}-\boldsymbol{V}(\boldsymbol{V} \cdot \boldsymbol{d}), \quad \boldsymbol{d}^{\prime}=\boldsymbol{d} . \tag{19}
\end{align*}
$$

2.1 Electric limit

The electric limit corresponds to the embedding

$$
\begin{equation*}
\left(\boldsymbol{A}_{e}, \phi_{e}\right) \hookrightarrow A_{e}=\left(\boldsymbol{A}_{e}, 0,-\frac{1}{k_{1}} \phi_{e}\right), \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\boldsymbol{j}_{e}, \rho_{e}\right) \hookrightarrow j_{e}=\left(k_{2} \boldsymbol{j}_{e}, 0,-k_{2} \rho_{e}\right) . \tag{21}
\end{equation*}
$$

If we define $\boldsymbol{B}_{e} \equiv \boldsymbol{b}=\boldsymbol{\nabla} \times \boldsymbol{A}_{e}$ and take $\boldsymbol{E}_{e} \equiv k_{1} \boldsymbol{d}=\frac{1}{\mu_{0} \epsilon_{0}} \boldsymbol{d}=-\boldsymbol{\nabla} \phi_{e}$, then from equations (13) and (19), we find that the field components transform like

$$
\begin{equation*}
\boldsymbol{E}_{e}^{\prime}=\boldsymbol{E}_{e}, \quad \boldsymbol{B}_{e}^{\prime}=\boldsymbol{B}_{e}-\mu_{0} \epsilon_{0} \boldsymbol{V} \times \boldsymbol{E}_{e} \tag{22}
\end{equation*}
$$

as in [10]. From equations (17) and (18), with $k_{2} \equiv \mu_{0}$, we find the wave equations

$$
\begin{align*}
& \boldsymbol{\nabla} \times \boldsymbol{E}_{e}=\mathbf{0}, \quad \boldsymbol{\nabla} \cdot \boldsymbol{B}_{e}=0 \\
& \boldsymbol{\nabla} \times \boldsymbol{B}_{e}-\mu_{0} \epsilon_{0} \partial_{t} \boldsymbol{E}_{e}=\mu_{0} \boldsymbol{j}_{e}, \quad \boldsymbol{\nabla} \cdot \boldsymbol{E}_{e}=\frac{1}{\epsilon_{0}} \rho_{e} \tag{23}
\end{align*}
$$

as in equation (2.8) of [10]. Note that the Faraday term is missing in the first equation.

2.2 Magnetic limit

The magnetic limit corresponds to the embedding

$$
\begin{equation*}
\left(\boldsymbol{A}_{m}, \phi_{m}\right) \hookrightarrow A_{m}=\left(\boldsymbol{A}_{m}, \phi_{m}, 0\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\boldsymbol{j}_{m}, \rho_{m}\right) \hookrightarrow j_{m}=\left(k_{3} \boldsymbol{j}_{m},-k_{4} \rho_{m}, 0\right) \tag{25}
\end{equation*}
$$

From equation (14), we find $\boldsymbol{\nabla} \cdot \boldsymbol{j}-\partial_{4} j_{5}-\partial_{5} j_{4}=\boldsymbol{\nabla} \cdot \boldsymbol{j}_{m}=0$, which shows that the current \boldsymbol{j}_{m} cannot be related to a transport of charge [10].

By defining $\boldsymbol{B}_{m} \equiv \boldsymbol{b}=\boldsymbol{\nabla} \times \boldsymbol{A}_{m}$ and taking $\boldsymbol{E}_{m} \equiv \boldsymbol{c}=-\boldsymbol{\nabla} \phi_{m}-\partial_{t} \boldsymbol{A}_{m}$, then from equation (19) we get

$$
\begin{equation*}
\boldsymbol{E}_{m}^{\prime}=\boldsymbol{E}_{m}+\boldsymbol{V} \times \boldsymbol{B}_{m}, \quad \boldsymbol{B}_{m}^{\prime}=\boldsymbol{B}_{m} \tag{26}
\end{equation*}
$$

Finally, equations (17) and (18) show that the Maxwell equations reduce to

$$
\begin{align*}
& \boldsymbol{\nabla} \times \boldsymbol{E}_{m}=-\partial_{t} \boldsymbol{B}_{m}, \quad \boldsymbol{\nabla} \cdot \boldsymbol{B}_{m}=0, \\
& \boldsymbol{\nabla} \times \boldsymbol{B}_{m}=\mu_{0} \boldsymbol{j}_{m}, \quad \boldsymbol{\nabla} \cdot \boldsymbol{E}_{m}=\frac{1}{\epsilon_{0}} \rho_{m} \tag{27}
\end{align*}
$$

in agreement with [10]. The displacement current term is missing in the third equation.

3 Fluid and superfluid equations

3.1 Euler equation for fluids

Define the functional Lagrangian as

$$
\begin{equation*}
\tilde{\mathcal{L}}[\tilde{\rho}, \tilde{\phi}]=-\frac{1}{2} \tilde{\rho} \partial_{\mu} \tilde{\phi} \partial^{\mu} \tilde{\phi}-V(\tilde{\rho}) \tag{28}
\end{equation*}
$$

The Euler-Lagrange equation for $\tilde{\rho}$ leads to $\frac{1}{2} \partial_{\mu} \tilde{\phi} \partial^{\mu} \tilde{\phi}+V^{\prime}(\tilde{\rho})=0$. By defining the embedding as in equations (6) and (7), with $a_{0}=-1$ and $\tilde{\rho}(x) \equiv \rho(\boldsymbol{x}, t)$, we find

$$
\begin{equation*}
\frac{1}{2} \boldsymbol{\nabla} \phi \cdot \boldsymbol{\nabla} \phi+\partial_{t} \phi=-V^{\prime} . \tag{29}
\end{equation*}
$$

The gradient of this expression gives

$$
\begin{equation*}
(\boldsymbol{\nabla} \phi \cdot \boldsymbol{\nabla}) \boldsymbol{\nabla} \phi+\partial_{t}(\boldsymbol{\nabla} \phi)=-\boldsymbol{\nabla}\left(V^{\prime}\right) . \tag{30}
\end{equation*}
$$

With $\boldsymbol{v}=\boldsymbol{\nabla} \phi$ (so that ϕ is a velocity potential) and $\boldsymbol{\nabla}\left(V^{\prime}\right)=\frac{1}{\rho} \boldsymbol{\nabla} p$ (where p is the pressure) we find the Euler equation,

$$
\begin{equation*}
\partial_{t} \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}=-\frac{1}{\rho} \boldsymbol{\nabla} p, \tag{31}
\end{equation*}
$$

which is a particular case of the Navier-Stokes equation, with viscosity and body force both equal to zero. The Lagrangian of equation (28) can be deduced from

$$
\begin{equation*}
\tilde{\mathcal{L}}\left[\tilde{\psi}, \tilde{\psi}^{*}\right] \propto \partial_{\mu} \tilde{\psi} \partial^{\mu} \tilde{\psi}^{*}-V(|\tilde{\psi}|), \tag{32}
\end{equation*}
$$

with complex field $\tilde{\psi}$, by defining the real fields $\tilde{\rho}$ and $\tilde{\phi}$ with the Madelung substitution $\tilde{\psi} \equiv$ $\sqrt{\tilde{\rho}} e^{i \tilde{\phi}}$.

3.2 Generalized models for non-barotropic fluids

In [3] we noticed that the Takahashi model for compressible irrotational barotropic fluids with pressure proportional to the square of the mass density [6] can be expressed in a Galilean covariant form as

$$
\begin{equation*}
\tilde{\mathcal{L}}=\frac{\rho_{0}}{8 v_{0}^{2}}\left(\partial^{\mu} \tilde{\phi} \partial_{\mu} \tilde{\phi}-2 v_{0}^{2}\right)^{2} \tag{33}
\end{equation*}
$$

In this section, we generalize equation (33) by relaxing $p \propto \rho^{2}$ (p : pressure, ρ : density of the fluid) to $p \propto \rho^{\gamma}(\gamma \geq 1)$. For $\gamma \neq 1$ we consider

$$
\begin{equation*}
\tilde{\mathcal{L}} \propto\left(\partial \tilde{\phi} \partial \tilde{\phi}-v_{0}^{2}\right)^{\gamma} \tag{34}
\end{equation*}
$$

so that variation of the field $\tilde{\phi}$ gives

$$
\begin{equation*}
\left(\frac{1}{2} \partial_{\mu} \tilde{\phi} \partial^{\mu} \tilde{\phi}-v_{0}^{2}\right) \partial_{\nu} \partial^{\nu} \tilde{\phi}+(\gamma-1) \partial_{\mu \nu} \tilde{\phi} \partial^{\mu} \tilde{\phi} \partial^{\nu} \tilde{\phi}=0 . \tag{35}
\end{equation*}
$$

Using equation (6) with $a_{0}=-1$, it becomes

$$
\begin{equation*}
v_{0}^{2} \nabla^{2} \phi-(\gamma-1) \partial_{t}^{2} \phi=\nabla^{2} \phi\left(\frac{1}{2} \nabla \phi \cdot \nabla \phi+\partial_{t} \phi\right)+(\gamma-1) \nabla \phi \cdot \nabla\left(\frac{1}{2} \nabla \phi \cdot \nabla \phi+2 \partial_{t} \phi\right) . \tag{36}
\end{equation*}
$$

If $\gamma=1$, it reduces further:

$$
\begin{equation*}
v_{0}^{2} \nabla^{2} \phi=\nabla^{2} \phi\left(\frac{1}{2} \nabla \phi \cdot \nabla \phi+\partial_{t} \phi\right) . \tag{37}
\end{equation*}
$$

When $\gamma \neq 1$, we recover the Takahashi model [6].
Other equations relevant in condensed matter physics are obtained by generalizing equation (32). For instance, consider

$$
\begin{equation*}
\tilde{\mathcal{L}}\left[\tilde{\psi}, \tilde{\psi}^{*}\right] \propto\left(\partial \tilde{\psi} \partial \tilde{\psi}^{*}-V(|\tilde{\psi}|)\right)^{p} \tag{38}
\end{equation*}
$$

with a complex field $\tilde{\psi}$. The choices $p=1$ and $V=\lambda|\tilde{\psi}|^{4}$, together with the embedding in equations (6) and (8), give us

$$
\begin{equation*}
\mathcal{L} \propto \nabla \psi \cdot \nabla \psi^{*}-i m\left(\psi^{*} \partial_{t} \psi-\psi \partial_{t} \psi^{*}\right)-\lambda|\psi|^{4} . \tag{39}
\end{equation*}
$$

The Euler-Lagrange equation, with $a_{0}=-1$, leads to the non-linear Schrödinger, or GrossPitaevski, equation:

$$
\begin{equation*}
i \partial_{t} \psi=-\frac{1}{2 m} \nabla^{2} \psi+\frac{\lambda}{m}|\psi|^{2} \psi . \tag{40}
\end{equation*}
$$

3.3 Model of non-viscous fluids and liquid helium

As a last example, let us consider equation (28) with a five-dimensional Clebsch transformation $\partial \tilde{\phi} \rightarrow \partial \tilde{\phi}+\tilde{\alpha} \partial \tilde{\beta}:$

$$
\begin{equation*}
\tilde{\mathcal{L}}=-\frac{\tilde{\rho}}{2 v_{0}^{2}}\left(\partial_{\mu} \tilde{\phi}+\tilde{\alpha} \partial_{\mu} \tilde{\beta}\right)\left(\partial^{\mu} \tilde{\phi}+\tilde{\alpha} \partial^{\mu} \tilde{\beta}\right)-V(\tilde{\rho}) \tag{41}
\end{equation*}
$$

Next we define $\tilde{\alpha}(x)=\alpha(\boldsymbol{x}, t), \tilde{\beta}(x)=\beta(\boldsymbol{x}, t)$, and $\tilde{\rho}(x)=\rho(\boldsymbol{x}, t)$, with equation (7) for $\tilde{\phi}(x)$ and equation (6) for the coordinates. Here we take $a_{0}=+1$. Then the Lagrangian in equation (41) becomes

$$
\begin{equation*}
\mathcal{L}=\frac{\rho}{v_{0}^{2}}\left(\partial_{t} \phi-\frac{1}{2} \nabla \phi \cdot \nabla \phi+\alpha\left(\partial_{t} \beta-\frac{1}{2} \alpha \nabla \beta \cdot \nabla \beta\right)-\alpha \nabla \phi \cdot \nabla \beta\right)-V(\rho) . \tag{42}
\end{equation*}
$$

This may be expressed as

$$
\begin{equation*}
\mathcal{L}=\frac{\rho}{v_{0}^{2}}\left(\partial_{t} \phi+\alpha \partial_{t} \beta-\frac{1}{2} \boldsymbol{v}^{2}\right)-V(\rho), \tag{43}
\end{equation*}
$$

where $\boldsymbol{v}=-\boldsymbol{\nabla} \phi-\alpha \boldsymbol{\nabla} \beta$. This Lagrangian was employed by Thellung and Ziman to describe the rotational components of liquid helium (see section 4.3 of [2]).

4 Bhabha and Duffin-Kemmer-Petiau equations: spin zero and spin one

In this section, we briefly summarize the references [4] and [5]. The Duffin-Kemmer-Petiau (DKP) equation is

$$
\begin{equation*}
\left(\beta^{\mu} \partial_{\mu}+k\right) \Psi=0 \tag{44}
\end{equation*}
$$

with matrices β satisfying the DKP algebra:

$$
\begin{equation*}
\beta^{\mu} \beta^{\lambda} \beta^{\nu}+\beta^{\nu} \beta^{\lambda} \beta^{\mu}=g^{\mu \lambda} \beta^{\nu}+g^{\nu \lambda} \beta^{\mu} \tag{45}
\end{equation*}
$$

where $g^{\mu \nu}$ is the Galilean metric. The adjoint of Ψ is defined as $\bar{\Psi} \equiv \Psi^{\dagger} \eta$, where $\eta=\left(\beta^{4}+\beta^{5}\right)^{2}+\mathbf{1}$. In the following we use the momentum version of equation (44):

$$
\begin{equation*}
\left(\beta^{\mu} p_{\mu}-i k\right) \Psi=0 \tag{46}
\end{equation*}
$$

4.1 DKP equation for spin zero and spin one

For spinless particles, the β 's can be taken as in reference [5]. The DKP oscillator is described by performing the non-minimal substitution

$$
\begin{equation*}
\boldsymbol{p} \rightarrow \boldsymbol{p}+i \omega \eta \boldsymbol{r} \tag{47}
\end{equation*}
$$

Then equation (46) results in the following equation [5]:

$$
\begin{equation*}
E \phi=\left(\frac{\boldsymbol{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \boldsymbol{r}^{2}-\frac{3}{2} \hbar \omega\right) \phi . \tag{48}
\end{equation*}
$$

This equation has been obtained as the low-velocity limit of the energy of the DKP oscillator [11].
For spin one, we use a fifteen-dimensional representation of the DKP algebra [4]. We consider the DKP harmonic oscillator by first performing the non-minimal substitution, equation (47). Then equation (46) can be cast into the form [4]

$$
\begin{equation*}
E \boldsymbol{A}=\left[\frac{\boldsymbol{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \boldsymbol{r}^{2}-\frac{3}{2} \hbar \omega-\frac{\omega}{\hbar} \boldsymbol{L} \cdot \boldsymbol{S}\right] \boldsymbol{A} . \tag{49}
\end{equation*}
$$

This is the non-relativistic energy obtained in [11].

5 Dirac equation: spin $1 / 2$

The details for this section are in [4]. Some recent developments, including the interaction with an external gauge field, are described in [1]. The non-relativistic Dirac equation is

$$
\begin{equation*}
\left(\gamma^{\mu} \partial_{\mu}+k\right) \Psi=0, \quad \mu=1, \ldots, 5, \tag{50}
\end{equation*}
$$

written in momentum space as equation (46) with the β 's replaced by γ 's. The gamma matrices satisfy

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \tag{51}
\end{equation*}
$$

and can be chosen as

$$
\gamma^{n}=\left(\begin{array}{cc}
\sigma_{n} & 0 \tag{52}\\
0 & -\sigma_{n}
\end{array}\right), \quad \gamma^{4}=\left(\begin{array}{cc}
0 & 0 \\
-\sqrt{2} & 0
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{cc}
0 & \sqrt{2} \\
0 & 0
\end{array}\right),
$$

where each entry is a two-by-two matrix and the σ_{n} are the spin Pauli matrices. The adjoint spinor is defined as $\bar{\Psi}=\Psi^{\dagger} \zeta$, where $\zeta=\frac{-i}{\sqrt{2}}\left(\gamma^{4}+\gamma^{5}\right)=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$.

Now let us consider the harmonic oscillator. If we perform the non-minimal substitution, equation (47), with η now replaced by ζ, for a spinor $\Psi=\binom{\varphi}{\chi}$ we find the Lévy-Leblond equation [12]:

$$
\begin{align*}
& (\boldsymbol{\sigma} \cdot \boldsymbol{p}-i k) \varphi+\left(\omega \boldsymbol{\sigma} \cdot \boldsymbol{r}+\sqrt{2} p_{5}\right) \chi=0 \\
& (\boldsymbol{\sigma} \cdot \boldsymbol{p}+i k) \chi+\left(\sqrt{2} p_{4}-\omega \boldsymbol{\sigma} \cdot \boldsymbol{r}\right) \varphi=0 \tag{53}
\end{align*}
$$

Defining $p_{4}=p_{5}$ and $\chi=-i \varphi$ we find [4]

$$
\begin{equation*}
E \varphi=\left(\frac{\boldsymbol{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \boldsymbol{r}^{2}-\frac{3}{2} \hbar \omega-\frac{2}{\hbar} \omega \boldsymbol{L} \cdot \boldsymbol{S}\right) \varphi \tag{54}
\end{equation*}
$$

where $\mathbf{S} \equiv \frac{1}{2} \hbar \boldsymbol{\sigma}$. This is in agreement with the low-velocity limit of the Dirac oscillator investigated in [13]. We plan to quantize the systems discussed in this paper following the same lines as the scalar field [14].

Acknowledgements

We thank the organizers of the Fifth "Symmetry in Nonlinear Mathematical Physics" Conference in Kyiv. Financial support has been provided by NSERC (Canada) and CNPq (Brazil).
[1] de Montigny M., Khanna F.C. and Santana A.E., Nonrelativistic wave equations with gauge fields, Int. J. Theor. Phys., 2003, V.42, 649-671.
[2] de Montigny M., Khanna F.C. and Santana A.E., Lorentz-like covariant equations of non-relativistic fluids, J. Phys. A: Math. Gen., 2003, V.36, 2009-2026.
[3] de Montigny M., Khanna F.C. and Santana A.E., On Galilei-covariant Lagrangian models of fluids, J. Phys. A: Math. Gen., 2001, V.34, 10921-10937.
[4] de Montigny M., Khanna F.C., Santana A.E. and Santos E.S., Galilean covariance and non-relativistic Bhabha equations, J. Phys. A: Math. Gen., 2001, V.34, 8901-8917.
[5] de Montigny M., Khanna F.C., Santana A.E., Santos E.S. and Vianna J.D.M., Galilean covariance and the Duffin-Kemmer-Petiau equation, J. Phys. A: Math. Gen., 2000, V.33, L273-L278.
[6] Takahashi Y., Towards the many-body theory with the Galilei invariance as a guide. I, II, Fortschr. Phys., 1988, V.36, 63-81, 83-96;
Omote M., Kamefuchi S., Takahashi Y. and Ohnuki Y., Galilean covariance and the Schrödinger equation, Fortschr. Phys., 1989, V.37, 933-950;
Santana A.E., Khanna F.C. and Takahashi Y., Galilei covariance and (4,1) de Sitter space, Prog. Theor. Phys., 1998, V.99, 327-336.
[7] Soper D.E., Classical field theory, New York, Wiley and Sons, 1976, Section 7.3;
Pinski G., Galilean tensor calculus, J. Math. Phys., 1968, V.9, 1927-1930;
Duval C., Burdet G., Künzle H.P. and Perrin M., Bargmann structures and Newton-Cartan theory, Phys. Rev. D, 1985, V.31, 1841-1853.
[8] Kapuścik E., On the physical meaning of the Galilean space-time coordinates, Acta Phys. Pol. B, 1986, V.17, 569-575.
[9] Jackiw R., Lectures on fluid dynamics - a particle theorist's view of supersymmetric, non-Abelian, noncommutative fluid mechanics and d-branes, Berlin, Springer, 2002; physics/0010042;
Hassaïne M. and Horváthy P.A., Field-dependent symmetries of a non-relativistic fluid model, Ann. Phys., 2000, V.282, 218-246;
Hassaïne M. and Horváthy P.A., Relativistic Chaplygin gas with field-dependent Poincaré symmetry, Lett. Math. Phys., 2001, V.57, 33-40.
[10] Le Bellac M. and Lévy-Leblond J.M., Galilean electromagnetism, Nuov. Cim. B, 1973, V.14, 217-233.
[11] Nedjadi Y. and Barrett R.C., The Duffin-Kemmer-Petiau oscillator, J. Phys. A: Math. Gen., 1994, V.27, 4301-4315.
[12] Lévy-Leblond J.M., Nonrelativistic particles and wave equations, Comm. Math. Phys., 1967, V.6, 286-311; Fushchich W.I. and Nikitin A.G., Symmetries of equations in quantum mechanics, New York, Allerton Press, 1994.
[13] Moshinsky M. and Szczepaniak A., The Dirac oscillator, J. Phys. A: Math. Gen., 1989, V.22, L817-L819.
[14] Abreu L.M., de Montigny M., Khanna F.C. and Santana A.E., Galilei-covariant path-integral quantization of non-relativistic complex scalar fields, Ann. Phys., 2003, V.308, 244-262.

