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We describe a metric formulation of Galilean covariance in 4 + 1 dimensions. As a first
example, we recover the two Galilean limits of electromagnetism investigated previously by
Le Bellac and Lévy-Leblond. Then we describe the field theoretical formulation of some
fluid and superfluid models. Finally the non-relativistic Bhabha equations for spin 0 and 1
particles, and the Dirac equation for spin 1/2 are considered.

1 Introduction

Almost one century has elapsed since Galilei relativity was superseded by Einstein’s theory
as a realistic framework for describing high velocity phenomena. Yet there exists a wealth of
systems at low-energy, particularly in condensed matter physics and nuclear physics, where any
new method involving Galilean invariance is likely to be useful. In fact, in most many-body
theories, Galilean invariance simply cannot be ignored. Moreover, contrary to popular belief,
the mathematical structure of the Galilei group is more intricate than that of the Lorentz group.
A case in point is that the representation theory of the Galilei group was thoroughly investigated
nearly twenty years after its relativistic counterpart. The general program discussed here consists
of a metric formulation of Galilei-invariance, so that one can use Galilean covariance, tensor
analysis, etc. as a guiding principle to devise many-body models. Essentially, we exploit the
well-known fact that the central extension of the Galilei algebra in 3+1 dimensions is a subalgebra
of the Poincaré algebra in 4 + 1 dimensions. Hereafter we summarize the articles [1–5], where
further details can be found. Our geometrical approach follows the articles of Takahashi and his
collaborators [6]. Other five-dimensional formalisms can be found in [7, 8].

We define a Galilei-vector (x, t, s) such that a boost acts on it as

x′ = x − V t, t′ = t,

s′ = s− V · x +
1
2
V 2t, (1)

with relative velocity V . Note that the units of s are L2

T . The scalar product,

(A|B) = AµBµ ≡ A · B −A4B5 −A5B4, (2)

of two Galilei-vectors A and B is invariant under transformation (1). This amounts to saying
that we work on the light front in 4 + 1 dimensions. The need for an additional coordinate
may be explained in different ways: (1) as the phase required by the quantum wave function
in order to keep the Schrödinger equation Galilei-invariant; (2) as a term added to the classical
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free Lagrangian so that it becomes Galilei-invariant rather than quasi-invariant; (3) as noted
in [8], it may be understood as a control parameter that makes up for lack of a signal with
a universal velocity. We expect this approach to be useful in field theories. However, we do not
claim that any Galilei-invariant theory can be expressed in this way. Neither do we suggest that
this formalism will lead to the respective non-relativistic limits (for instance, the Chaplygin gas
model is obtained from the Nambu–Goto action [9]).

Equation (1) can be written as

xµ′
= Λµ′

νx
ν , (3)

where Λµ′
ν is the (µ′ν)-entry, or




x1′

x2′

x3′

x4′

x5′




=




1 0 0 −V1 0
0 1 0 −V2 0
0 0 1 −V3 0
0 0 0 1 0

−V1 −V2 −V3
1
2V 2 1







x1

x2

x3

x4

x5


 . (4)

For a Galilei-oneform we have:

xµ′ = Λν
µ′xν , (5)

where now Λν
µ′ is the (νµ′)-entry, with Λν

µ′xν as in equation (4) with the change Vj → −Vj .
Throughout this paper, except in Section 2, we utilize the Galilei-vectors (x1, . . . , x5) with

each component having units of length:

(x1, . . . , x5) =
(
x, vt,

s

v

)
, (6)

where v has units of velocity. For a real field φ̃, the projection is defined as

φ̃(x) ≡ φ(x, t) + a0s, (7)

with a0 a dimensionless constant. For a complex field ψ̃ we use the definition:

ψ̃(x) ≡ eia0msψ(x, t), (8)

with natural units, such that � = 1. We use a0 = +1 or −1.
If we use (x, t) → xµ = (x, t, s), then using the five-momentum pµ ≡ −i∂µ = (−i∇,−i∂t,

−i∂s) with E = i∂t and m = i∂s, we obtain pµ = (p,−E,−m) and pµ = gµνpν = (p,m,E).
Thereupon the mass does not enter as an external parameter, but rather as a remnant of the
fifth component of the particle’s momentum, starting from an apparently massless theory in
4 + 1 dimensions!

2 Galilean electromagnetism

Here we recover the two ‘Galilean limits’ of electromagnetism obtained thirty years ago by Le
Bellac and Lévy-Leblond [10].

The Lorentz transformations of a four-vector (u0,u),

u0′ = γ

(
u0 − 1

c
V · u

)
,

u′ = u − γ
V

c
u0 +

V

V 2 (γ − 1)V · u, (9)
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where γ ≡ 1√
1−V 2/c2

, admits two well defined Galilean limits [10]. One is related to largely

timelike vectors, with u0′ = u0 and u′ = u− 1
cV u0, and corresponds to the ‘electric’ limit. The

second limit is for largely spacelike vectors, with u0′ = u0− 1
cV ·u and u′ = u, and is associated

with the ‘magnetic’ limit. Throughout this section, we define the embedding of the Newtonian
space-time into the de Sitter space by

(x, t) ↪→ x = (x, t, 0) , (10)

so that ∂k = ∇k, ∂4 = ∂t and ∂5 = 0. The electric and magnetic limits will be obtained by
considering two particular embeddings of the five-potential.

From equation (5), we find that

A′ = A + V A5,

A4′ = A4 + V · A +
1
2
V 2A5, A5′ = A5. (11)

Let us denote the components of the five-dimensional electromagnetic antisymmetric tensor
Fµν ≡ ∂µAν − ∂νAµ as

Fµν =




0 b3 −b2 c1 d1

−b3 0 b1 c2 d2

b2 −b1 0 c3 d3

−c1 −c2 −c3 0 a
−d1 −d2 −d3 −a 0


 . (12)

They are expressed in terms of the five-potential A as

b = ∇ × A, c = ∇A4 − ∂4A,

d = ∇A5 − ∂5A, a = ∂4A5 − ∂5A4. (13)

The external five-current, jµ = (j, j4, j5), also transforms as a five-vector and one writes the
continuity equation as

∂µjµ = ∇ · j − ∂4j5 − ∂5j4 = 0. (14)

In terms of the components in equation (12), the Maxwell equations,

∂µFαβ + ∂αFβµ + ∂βFµα = 0 (15)

and

∂νF
µν = jµ (16)

become

∇ · b = 0, ∇ × c + ∂4b = 0,

∇ × d + ∂5b = 0, ∇a− ∂4d + ∂5c = 0, (17)

and

∇ × b − ∂5c − ∂4d = j, ∇ · c − ∂4a = −j4, ∇ · d + ∂5a = −j5, (18)

respectively. Finally, the electromagnetic tensor transforms like Fµ′ν′ = Λ
α

µ′ Λ β
ν′ Fαβ , so that

its components transform as

a′ = a+ V · d, b′ = b − V × d,

c′ = c + V × b +
1
2
V 2d − aV − V (V · d), d′ = d. (19)
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2.1 Electric limit

The electric limit corresponds to the embedding

(Ae, φe) ↪→ Ae =
(

Ae, 0,− 1
k1
φe

)
, (20)

and

(je, ρe) ↪→ je = (k2je, 0,−k2ρe) . (21)

If we define Be ≡ b = ∇×Ae and take Ee ≡ k1d = 1
µ0ε0

d = −∇φe, then from equations (13)
and (19), we find that the field components transform like

E′
e = Ee, B′

e = Be − µ0ε0V × Ee, (22)

as in [10]. From equations (17) and (18), with k2 ≡ µ0, we find the wave equations

∇ × Ee = 0, ∇ · Be = 0,

∇ × Be − µ0ε0∂tEe = µ0je, ∇ · Ee =
1
ε0
ρe, (23)

as in equation (2.8) of [10]. Note that the Faraday term is missing in the first equation.

2.2 Magnetic limit

The magnetic limit corresponds to the embedding

(Am, φm) ↪→ Am = (Am, φm, 0) , (24)

and

(jm, ρm) ↪→ jm = (k3jm,−k4ρm, 0) . (25)

From equation (14), we find ∇ · j − ∂4j5 − ∂5j4 = ∇ · jm = 0, which shows that the current jm

cannot be related to a transport of charge [10].
By defining Bm ≡ b = ∇×Am and taking Em ≡ c = −∇φm−∂tAm, then from equation (19)

we get

E′
m = Em + V × Bm, B′

m = Bm. (26)

Finally, equations (17) and (18) show that the Maxwell equations reduce to

∇ × Em = −∂tBm, ∇ · Bm = 0,

∇ × Bm = µ0jm, ∇ · Em =
1
ε0
ρm (27)

in agreement with [10]. The displacement current term is missing in the third equation.

3 Fluid and superfluid equations

3.1 Euler equation for fluids

Define the functional Lagrangian as

L̃[ρ̃, φ̃] = −1
2
ρ̃∂µφ̃∂

µφ̃− V (ρ̃). (28)
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The Euler–Lagrange equation for ρ̃ leads to 1
2∂µφ̃∂

µφ̃+ V ′(ρ̃) = 0. By defining the embedding
as in equations (6) and (7), with a0 = −1 and ρ̃(x) ≡ ρ(x, t), we find

1
2
∇φ · ∇φ+ ∂tφ = −V ′. (29)

The gradient of this expression gives

(∇φ · ∇)∇φ+ ∂t(∇φ) = −∇(V ′). (30)

With v = ∇φ (so that φ is a velocity potential) and ∇(V ′) = 1
ρ∇p (where p is the pressure) we

find the Euler equation,

∂tv + (v · ∇)v = −1
ρ
∇p, (31)

which is a particular case of the Navier–Stokes equation, with viscosity and body force both
equal to zero. The Lagrangian of equation (28) can be deduced from

L̃[ψ̃, ψ̃∗] ∝ ∂µψ̃∂
µψ̃∗ − V (|ψ̃|), (32)

with complex field ψ̃, by defining the real fields ρ̃ and φ̃ with the Madelung substitution ψ̃ ≡√
ρ̃eiφ̃.

3.2 Generalized models for non-barotropic fluids

In [3] we noticed that the Takahashi model for compressible irrotational barotropic fluids with
pressure proportional to the square of the mass density [6] can be expressed in a Galilean
covariant form as

L̃ =
ρ0

8v2
0

(
∂µφ̃∂µφ̃− 2v2

0

)2
. (33)

In this section, we generalize equation (33) by relaxing p ∝ ρ2 (p: pressure, ρ: density of the
fluid) to p ∝ ργ (γ ≥ 1). For γ �= 1 we consider

L̃ ∝ (∂φ̃∂φ̃− v2
0)

γ , (34)

so that variation of the field φ̃ gives(
1
2
∂µφ̃∂

µφ̃− v2
0

)
∂ν∂

ν φ̃+ (γ − 1)∂µν φ̃∂
µφ̃∂ν φ̃ = 0. (35)

Using equation (6) with a0 = −1, it becomes

v2
0∇2φ− (γ − 1)∂2

t φ = ∇2φ

(
1
2
∇φ · ∇φ+ ∂tφ

)
+ (γ − 1)∇φ · ∇

(
1
2
∇φ · ∇φ+ 2∂tφ

)
. (36)

If γ = 1, it reduces further:

v2
0∇2φ = ∇2φ

(
1
2
∇φ · ∇φ+ ∂tφ

)
. (37)

When γ �= 1, we recover the Takahashi model [6].
Other equations relevant in condensed matter physics are obtained by generalizing equa-

tion (32). For instance, consider

L̃[ψ̃, ψ̃∗] ∝ (∂ψ̃∂ψ̃∗ − V (|ψ̃|))p, (38)
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with a complex field ψ̃. The choices p = 1 and V = λ|ψ̃|4, together with the embedding in
equations (6) and (8), give us

L ∝ ∇ψ · ∇ψ∗ − im(ψ∗∂tψ − ψ∂tψ
∗) − λ|ψ|4. (39)

The Euler–Lagrange equation, with a0 = −1, leads to the non-linear Schrödinger, or Gross–
Pitaevski, equation:

i∂tψ = − 1
2m

∇2ψ +
λ

m
|ψ|2 ψ. (40)

3.3 Model of non-viscous fluids and liquid helium

As a last example, let us consider equation (28) with a five-dimensional Clebsch transformation
∂φ̃→ ∂φ̃+ α̃∂β̃ :

L̃ = − ρ̃

2v2
0

(∂µφ̃+ α̃∂µβ̃)(∂µφ̃+ α̃∂µβ̃) − V (ρ̃). (41)

Next we define α̃(x) = α(x, t), β̃(x) = β(x, t), and ρ̃(x) = ρ(x, t), with equation (7) for φ̃(x) and
equation (6) for the coordinates. Here we take a0 = +1. Then the Lagrangian in equation (41)
becomes

L =
ρ

v2
0

(
∂tφ− 1

2
∇φ · ∇φ+ α

(
∂tβ − 1

2
α∇β · ∇β

)
− α∇φ · ∇β

)
− V (ρ). (42)

This may be expressed as

L =
ρ

v2
0

(
∂tφ+ α∂tβ − 1

2
v2

)
− V (ρ), (43)

where v = −∇φ − α∇β. This Lagrangian was employed by Thellung and Ziman to describe
the rotational components of liquid helium (see section 4.3 of [2]).

4 Bhabha and Duffin–Kemmer–Petiau equations:
spin zero and spin one

In this section, we briefly summarize the references [4] and [5]. The Duffin–Kemmer–Petiau
(DKP) equation is

(βµ∂µ + k)Ψ = 0, (44)

with matrices β satisfying the DKP algebra:

βµβλβν + βνβλβµ = gµλβν + gνλβµ, (45)

where gµν is the Galilean metric. The adjoint of Ψ is defined as Ψ ≡ Ψ†η, where η = (β4+β5)2+1.
In the following we use the momentum version of equation (44):

(βµpµ − ik)Ψ = 0. (46)
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4.1 DKP equation for spin zero and spin one

For spinless particles, the β’s can be taken as in reference [5]. The DKP oscillator is described
by performing the non-minimal substitution

p → p + iωηr. (47)

Then equation (46) results in the following equation [5]:

Eφ =
(

p2

2m
+

1
2
mω2r2 − 3

2
�ω

)
φ. (48)

This equation has been obtained as the low-velocity limit of the energy of the DKP oscillator [11].
For spin one, we use a fifteen-dimensional representation of the DKP algebra [4]. We consider

the DKP harmonic oscillator by first performing the non-minimal substitution, equation (47).
Then equation (46) can be cast into the form [4]

EA =
[

p2

2m
+

1
2
mω2r2 − 3

2
�ω − ω

�
L · S

]
A. (49)

This is the non-relativistic energy obtained in [11].

5 Dirac equation: spin 1/2

The details for this section are in [4]. Some recent developments, including the interaction with
an external gauge field, are described in [1]. The non-relativistic Dirac equation is

(γµ∂µ + k) Ψ = 0, µ = 1, . . . , 5, (50)

written in momentum space as equation (46) with the β’s replaced by γ’s. The gamma matrices
satisfy

{γµ, γν} = γµγν + γνγµ = 2gµν , (51)

and can be chosen as

γn =
(
σn 0
0 −σn

)
, γ4 =

(
0 0

−√
2 0

)
, γ5 =

(
0

√
2

0 0

)
, (52)

where each entry is a two-by-two matrix and the σn are the spin Pauli matrices. The adjoint

spinor is defined as Ψ = Ψ†ζ, where ζ = −i√
2

(
γ4 + γ5

)
=

(
0 −i
i 0

)
.

Now let us consider the harmonic oscillator. If we perform the non-minimal substitution,

equation (47), with η now replaced by ζ, for a spinor Ψ =
(
ϕ
χ

)
we find the Lévy-Leblond

equation [12]:

(σ · p − ik)ϕ+
(
ωσ · r +

√
2p5

)
χ = 0,

(σ · p + ik)χ+
(√

2p4 − ωσ · r
)
ϕ = 0. (53)

Defining p4 = p5 and χ = −iϕ we find [4]

Eϕ =
(

p2

2m
+

1
2
mω2r2 − 3

2
�ω − 2

�
ωL · S

)
ϕ, (54)

where S ≡ 1
2�σ. This is in agreement with the low-velocity limit of the Dirac oscillator investi-

gated in [13]. We plan to quantize the systems discussed in this paper following the same lines
as the scalar field [14].
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