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D-branes on Calabi–Yau Hypersurfaces

Ivan M. BURBAN
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The construction of BPS D-branes of the type IIB superstring theory on two- and three-
parameter elliptic and K3 fibered Calabi–Yau hypersurfaces is discussed. The explicit maps
between the characteristic classes of the Chan–Paton fiber bundle and the D-brane charges
is established.

1 Introduction

In this note we study the description of BPS D-branes of the type IIB superstring theory
compactified on Calabi–Yau manifolds. It is well know that superstring theory is not only
theory of superstrings but also another of extended objects, D-branes, which although are not
perturbative string states themselves but allow description in the perturbative string theory.

In spite of significant progress in the study of D-branes on the curved space-time spaces, in
particular, on Calabi–Yau manifolds, situation is far from being understood. In the arsenal of
the theoretical physics there is a number of simple Calabi–Yau manifolds, which are convenient
for studying superstring theories and their D-branes. In this note we consider D-branes on the
Calabi–Yau hypersurfaces of weighted projective spaces with two- and three-parameter Kähler
moduli spaces. These surfaces have orbifold singularities. After resolving these singularities
the hypersurfaces exhibit structures of fibered Calabi–Yau manifolds. It helps us to make the
description of D-branes on these manifolds in more detail. The analysis of string dualities in
four space-time dimensions requires to research D-branes wrapped on supersymmetric cycles of
compactifying manifold. The study of boundary states of D-branes wrapped around of super-
symmetric cycles in the quintic hypersurface of four dimension projective space was done in [1].
The detailed information on a part of spectrum of the D-branes on Calabi–Yau manifold in the
geometric phase was presented in [2]. In [3] the relevant aspects were extended to some other
models.

2 Weighted projective spaces

We consider weighted projective spaces P 4
(k1,k2,k3,k4,k5) with weights (k1, k2, k3, k4, k5) described

in five complex “homogeneous coordinates” (z1, z2, z3, z4, z5) not all of them vanishing, which
are subject to identification

(z1, z2, z3, z4, z5) �
(
λk1z1, λ

k2z2, λ
k3z3, λ

k4z4, λ
k5z5

)
(1)

for nonzero λ. Thus, a weighted projective space is a generalization of ordinary projective space
and in this notation P 4 = P 4

(1,1,1,1,1). These spaces, except of P 4
(k1,k2,k3,k4,k5) = P 4

(1,1,1,1,1), have
orbifold singularities due to the identification (1).

Indeed, if we put zi = (ζi)ki then from relation (1) we obtain

(ζk1
1 , ζk2

2 , ζk3
3 , ζk4

4 , ζk5
5 ) � (

(λζ1)k1 , (λζ2)k2 , (λζ3)k3 , (λζ4)k4 , (λζ5)k5
)

(2)
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that is

ζki
i � (λζi)ki ,

or

(ζ1, ζ2, ζ3, ζ4, ζ5) � λ (ζ1, ζ2, ζ3, ζ4, ζ5)

and

(ζ1, ζ2, ζ3, ζ4, ζ5) �
(
ζ1e

2πi
k1 , ζ2e

2πi
k2 , ζ3e

2πi
k3 , ζ4e

2πi
k4 , ζ5e

2πi
k5

)
.

Therefore,

P 4
(k1,k2,k3,k4,k5) =

P 4
(1,1,1,1,1)

Zk1 × Zk2 × Zk3 × Zk4 × Zk5

and we have obtained a manifold P 4
(k1,k2,k3,k4,k5)[d], d = k1 + k2 + k3 + k4 + k5, with orbifold

singularities.
We wish to study D-branes on the simplest Calabi–Yau hypersurfaces defined by polynomials

on the homogeneous coordinates in weighted projective spaces.
The one-parameter Calabi–Yau hypersurfaces M [4] are given by

z5
1 + z5

2 + z5
3 + z5

4 + z5
5 = 0, (z1 : z2 : z3 : z4 : z5) ∈ P 4

(1,1,1,1,1)[5], (3)

z6
1 + z6

2 + z6
3 + z6

4 + z3
5 = 0, (z1 : z2 : z3 : z4 : z5) ∈ P 4

(1,1,1,1,2)[6], (4)

z8
1 + z8

2 + z8
3 + z8

4 + z2
5 = 0, (z1 : z2 : z3 : z4 : z5) ∈ P 4

(1,1,1,1,4)[8], (5)

z10
1 + z10

2 + z10
3 + z5

4 + z2
5 = 0, (z1 : z2 : z3 : z4 : z5) ∈ P 4

(1,1,1,2,5)[10]. (6)

In order to study the stringy geometry of these manifolds we consider one-parameter family of
mirror manifolds W given by the Greene–Plesser orbifold construction {pi = 0}/Gi

z5
1 + z5

2 + z5
3 + z5

4 + z5
5 − 5ψz1z2z3z4z5 = 0, G = Z5 × Z5, (7)

z6
1 + z6

2 + z6
3 + z6

4 + z3
5 − 6ψz1z2z3z4z5 = 0, G = Z3 × Z2

6 , (8)

z8
1 + z8

2 + z8
3 + z8

4 + z2
5 − 8ψz1z2z3z4z5 = 0, G = Z2 × Z2

8 , (9)

z10
1 + z10

2 + z10
3 + z5

4 + z2
5 − 10ψz1z2z3z4z5 = 0, G = Z2

10. (10)

The stringy geometry of the Calabi–Yau hypersurfaces M [5, 6].

8z8
1 + z8

2 + z4
3 + z4

4 + z4
5 = 0, (z1 : z2 : z3 : z4 : z5) ∈ P 4

(1,1,2,2,2), (11)

z12
1 + z12

2 + z6
3 + z6

4 + z2
5 = 0, (z1 : z2 : z3 : z4 : z5) ∈ P 4

1,1,2,2,6, (12)

z18
1 + z18

2 + z18
3 + z3

4 + z2
5 = 0, (z1 : z2 : z3 : z4 : z5) ∈ P 4

1,1,1,6,9. (13)

are defined by the two-parameter families of the mirror manifolds W obtained by the Greene–
Plesser orbifold construction {pi = 0}/G.

z8
1 + z8

2 + z4
3 + z4

4 + z4
5 − 8ψz1z2z3z4z5 − 2φz4

1z
4
2 = 0, G = Z3

4 , (14)

z12
1 + z12

2 + z6
3 + z6

4 + z2
5 − 12ψz1z2z3z4z5 − 2φz6

1z
6
2 = 0, G = Z2

6 × Z2, (15)

z18
1 + z18

2 + z18
3 + z3

4 + z2
5 − 18ψz1z2z3z4z5 − 3φx1x2x3 = 0, G = Z18. (16)

The Calabi–Yau hypersurface M defined by the equation

z24
1 + z24

2 + z12
3 + z3

4 + z2
5 = 0, (z1 : z2 : z3 : z4 : z5) ∈ P 4

(1,1,2,8,12) (17)

has its three-parameter mirror family of W obtained by the Greene–Pleser orbifold construction

z24
1 + z24

2 + z12
3 + z3

4 + z2
5 − 12ψ0z1z2z3z4z5

− 2ψ1(z3z4z5)6 − ψ2(z4z5)12 = 0, G = Z6 × Z12. (18)
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3 Classical geometry of elliptic and K3 fibrations

The hypersurface P 4
(1,1,1,6,9)[18] has two divisors E and L, which generate H4(M,Z). The excep-

tional divisor E in M is generated by blowing up singular line z2 = z3 = 0, which intersects M
in a single point. The divisor L is defined by first order polynomial in z1, z2 and z3.

The two homology classes h, l generate homology group H2(M,Z). The elliptic fibration
structure is induced by linear system |L| which maps M to P 2. The generic fiber can be proved
to be an elliptic curve. The homology class l is a hyperplane class of E.

The choice (E,L) as generators of the complexified Kähler cone leads to generic Kähler class
K = t1E + t2L, where (t1, t2) are classical coordinates on Kähler moduli space of M.

The models P 4
(1,1,2,2,2)[8] and P 4

(1,1.2,2,6)[12] given by degree 8 and 12 hypersurfaces both at
z1 = z2 = 0 have a curve C of singularities blowing up of which leads to exceptional divisor E
in M . The second divisor class L of both models is K3 fiber of fibration of M over P 1, generated
by a linear system |L| which is generated by the degree one polynomials. The divisor classes E
and L together generate H4(M,Z). In both models the degree two polynomials generate the
linear system |H| = |2L+E|. The homology group H2(M,Z) is generated by the classes l and h,
which are defined by h = 1

4H ·L, l = 1
4H ·E for degree 8 model and h = 1

2H ·L, l = 1
2H ·E for

degree 12 model. The intersection relations for these models are

L3 = 0, E · h = 1,

E3 = 9, E2 · L = −3, E · L2 = 1, (19)

h = L2, l = E ·H · L, E · l = −2,

where H = E + 3L, for P 4
(1,1,1,6,9)[18] hypersurface,

H3 = 8, H2 · L = 4, H · L2 = 0, L3 = 0,

E3 = 16, E2 · L = 4, E · L2 = 0, H · E · L = 4,
h = 1/4H · L, l = 1/4H · E, H · h = 1, E · l = −2, (20)
L · l = 1, L · h = 0, H · l = 0, E · h = 1,
c2(M) · E = 8, c2(M) ·H = 56,

where |H| = |2L+ E|, for P 4
(1,1,2,2,6)[18] and

H3 = 4, H2 · L = 2, H · L2 = 0, L3 = 0,

E3 = −8, E2 · L = 2, E · L2 = 0, H · E · L = 2,
h = 1/4H · L, l = 1/4H · E, H · h = 1, E · l = −2, (21)
L · l = 1, L · h = 0, H · l = 0, E · h = 1,
c2(M) · E = 8, c2(M) ·H = 56,

where |H| = |2L + E|, for P 4
(1,1,2,6,9)[18] models. The choice (E,L) as generators of the com-

plexified Kähler cone leads to generic Kähler class K = t1E + t2L, where (t1, t2) are classical
coordinates on the Kähler moduli space of M.

4 D-branes and periods

In the points of large volume limit of Kähler moduli space we can relate the BPS charge lattice of
the low energy effective theory (the integral symplectic lattice H3(W,Z) of the middle cohomo-
logy of mirror manifold W ) with BPS charge lattice of microscopic D-brane charges (the integer
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quadratic lattice K(M) of K-theory of manifold M). An every vector n = (n6, n
1
4, n

2
4, n0, n

1
2, n

2
2)

of middle cohomology H3(W,Z) of the mirror manifold W defines central charge

Z(n) = n6Π1 + n1
4Π2 + n2

4Π3 + n0Π4 + n1
2Π5 + n2

2Π6. (22)

On the other hand every element η ∈ K(M) corresponding to topological invariant ch (η)
defines the effective charge (the Mukai vector) of D-brane

Q = ch (η)
√

Td (E) ∈ H0(M) ⊕H2(M) ⊕H4(M) ⊕H6(M). (23)

The central charge associated to the state η is

Z(t) =
∫

M

t3

6
Q0 − t2

2
Q2 + tQ4 −Q6. (24)

Equating (22) and (24) we obtain relations between the topological invariant of the K-theory
class η and low energy charges of a D-brane n = (n6, n

1
4, n

2
4, n0, n

1
2, n

2
2) in the large radius limit.

5 Examples

For example, in type IIB superstring theory we consider the topological invariants of D6-branes
wrapped on P 4

(1,1,1,6,9)[18].
In this case E is the vector bundle (the coherent sheaf) on the manifold M. The standard

formulae

ch (E) = r + c1 +
1
2

(
c21 − 2c2

)
+

1
6

(
c21 − 3c1c2 + c3

)
+ · · · ,

Td (E) = 1 +
1
2
c1 +

1
24
c1c2 + · · · .

give possibility to rewrite the charge (23) in the form

Q =
(
r, c1(E), ch2(E) +

r

24
c2(M), ch3(E) +

1
24
c1(E)c2(M)

)
. (25)

At the large radius limit we have following expression for these periods of holomorphic three
form Ω̂ of the mirror manifolds W.




Π1

Π2

Π3

Π4

Π5

Π6




=




1
2(3t31 + 3t21t2 + t1t

2
2) + 17

4 t1 + 3
2 t2,

−1
2 t

2
2 + 3

2 t1 + 3
2 ,

−1
2(3t21 + 2t1t2) + 3

2 t1 + 3
2 ,

1
t1
t2



, (26)

for P 4
(1,1,2,6,9)[18] surface,




Π1

Π2

Π3

Π4

Π5

Π6




=




2
3 t

3
1 + t21t2 + 13

6 t1 + t2
1
6 − 2t1t2
1 − t21

1
t1
t2



,




Π1

Π2

Π3

Π4

Π5

Π6




=




4
3(3t31 + 2t1t2 + 7

3 t1 + t2

−4t1t2 + 4t1 − 2t2 + 1
3

−2t21 − 2t1 + 1
1
t1
t2



. (27)
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for P 4
(1,1,2,2,2)[8] and P 4

(1,1,2,2,6)[12] surfaces, respectively. Using formulae (22), (23), (24), (26),
(27) we obtain the topological invariants of D6-branes

r = n6,

ch1(E) = n1
4E + n2

4L,

ch2(E) =
(

3
2
n2

4 + n1
2

)
h+

(
3
2
n1

4 + n2
2

)
l (28)

ch3(E) = −n0 +
1
2
n1

4 − 3n2
4,

wrapped on P 4
(1,1,1,6,9)[18] surface,

r = n6,

ch1(E) = n1
4E + n2

4L,

ch2(E) = (4n1
4 − 2n2

4 + n1
2)h+ (−2n1

4 + n2
2)l, (29)

ch2(E) = −n0 − 2
3
n1

4 − 2n2
4,

wrapped on P 4
(1,1,2,2,2)[8],

r = n6,

ch1(E) = n1
4E + n2

4L,

ch2(E) = 4n1
2h+ n2

2l, (30)

ch2(E) = −n0 − 1
3
n1

4 − 2n2
4,

wrapped on P 4
(1,1,2,2,6)[12].

6 Localized D-branes on hypersurfaces

Let i : D ↪→ M be embedding of an even projective surface D in a Calabi–Yau manifold M.
We can obtain class of D-brane states by wrapping D-branes on submanifold D. Multiple brane
configurations are described by coherent sheaf E on D. The charge of this configuration is
defined by torsion coherent sheaf i∗E which is the extension E by zero to the manifold M. The
Grothendieck–Riemann–Roch formula for the embedding i : D ↪→M gives Mukai vector

i∗(ch (E) Td (D)) = ch (i∗E) Td (M).

From this formula and from the topological invariants of the sheaf E on D we obtain topological
invariants of the torsion sheaf i∗E

ch1(i∗E) = rD,

ch2(i∗E) = i∗c1(E) +
r

2
i∗c1(E), (31)

ch2(i∗E) = i∗
(

ch2(E) +
1
2
c1(E)c1(D) +

1
12

(c1(D))2 + c2(D)
)
− r

12
Dc2(M).

and Mukai charge vector

Q =
(
0, rD, i∗c1(E) +

r

2
i∗c1(D),

ch2(E) +
1
2
c1(E)c1(D) +

r

12
(
c1(D) + c2(D)

) − r

24
Dc2(D)

)
. (32)
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By means of an adjunction formula

Dc2(M) = c2(D) −D2 = c2(D) −D3 = c2(D) − c1(D)2

this Mukai charge vector can be represented as

Q =
(

0, rD, i∗c1(E) +
r

2
i∗c1(D), ch2(E) +

1
2
c1(E)c1(D) +

r

8
c1(D)2 +

r

24
Dc2(D)

)
(33)

and central charge associated to it can be rewritten

Z(Q) = −r
2
t2D +

(
i∗c1(E) +

r

2
i∗c1(D)

)
t− ch2(E)

− 1
2
c1(E)c1(D) − r

8
c1(D)2 − r

24
c1(D). (34)

In type IIB superstring theory the topological invariants D-4 branes wrapped on some hyper-
surfaces of the Calabi–Yau manifold can be defined. It is easy to obtain topological invariants
of the D4-branes wrapped on the exceptional divisor E corresponding to BPS state with the
charge vector n = (0, n1

4, 0, n0, 0, n2
2) and with the central charge Z(n) = n1

4F1 + n2
2t

2 + n0 for
the P 4

(1,1,2,6,9) model

r = n1
4,

c1(E) = n2
l , (35)

c2(E) =
1
2
n2

2(n
2
2 + 3) + n1

4 + n0),

and with the charge n = (0, n1
4, 0, n0, n

1
2, n

2
2) and the central charges Z(n) = n1

4F1 + n1
2t

1 +
n2

2t2 + n0 for the P 4
(1,1,2,2,2)[8] and P 4

(1,1,2,2,6)[12] models

r(E) = n1
4,

c1(E) = (n1
2 + νn1

4)h+
(
n2

2 −
ν

2
n1

4

)
l, (36)

ch(E) = −3
2
νn1

4 −
1
2
n1

2 + n2
2 − n0.

where ν = −2, −4. The same method may be used to define the topological invariants of D-
branes on the surface (17). This surface is an elliptic fibration over a Hirzebruch surface which
itself is a P 1-fibration over P 1. As in the cases considered above this fibration structure is
essentially for investigation of the monodromy around singular points in the moduli space.

7 Monodromy

Consider complex function f(z)=
√
z. If we circle once the origin z→ z exp 2iπ, then f(z exp 2iπ)

= −f(z). The function does not return back to itself. This is signal that the function at the
point z = 0 is singular and in this case it is the start of a branch cut.

The behavior of a complex function or set of functions after transport around a singular point
(singularity) is connected with their monodromy. In general, a set of function transported once
around the singular point t0 return to the linear combination of themselves fi((z−z0) exp 2iπ) =
mij(z0)fj(z). The matrix mij depend on the singular point and it is called by the monodromy
matrix. It does not change under smooth deformations of the contour. The monodromy has
topological characteristic.
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In general, one of the important problems of algebraic geometry is to study families of alge-
braic variety parameterized by another variety. A subvariety in moduli space parameterizing the
singular fibers has the special interest. This subvariety is called the discriminant locus. One of
the main its topological invariants is so-called monodromy group. It is defined by the action of
homotopy group of the complement of discriminant locus on cohomology ring of fixed nonsingu-
lar fiber. The large radius limit point is situated in the intersection of the two divisors H and L
on the boundary of the moduli space [6]. The monodromy matrices of the two divisors E, H,
are expressed with respect to the (E,L) basis [5, 6] by

SL =




1 −1 −3 10 9 3
0 1 0 0 0 0
0 0 1 0 −3 −1
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1



, SH =




1 0 −1 3 2 0
0 1 0 1 0 −1
0 0 1 0 −1 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 1 0




(37)

for P 4
(1,1,1,6,9)[18] model,

SL =




1 0 −1 2 −2 0
0 1 0 −2 −4 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, SH =




1 −1 −2 6 4 0
0 1 0 4 0 −4
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 1




(38)

for P 4
(1,1,2,2,2)[8] model,

SL =




1 0 −1 20 0 0
0 1 0 0 −2 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1



, SH =




1 −1 −2 5 2 1
0 1 0 0 0 −2
0 0 1 −1 −2 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1




(39)

for P 4
(1,1,2,2,6)[12] model. We can use above formulae to convert the monodromy transformations

(37), (38), (39) into automorphisms of K-group K(M)

[E ] → [E ⊗ OM (L)], [E ] → [E ⊗ OM (H)], (40)

where [E ] ∈ K(M). The topological invariants of the sheaf E ′ = E ⊗OM (D) under the transfor-
mation (40) change to the form

r(E ′) = r(E),
ch1(E ′) = ch1(E) + rD,

ch2(E ′) = ch2(E) + ch1(E)D +
r

2
D2, (41)

ch3(E ′) = ch3(E) + ch2(E)D +
1
2
ch1(E)D2 +

r

6
D3,

where D = H, L. The representations of these transformations on the space of charge vectors
n = (n0, n

1
4, n

2
4, n0, n

1
2, n

2
2) and transformations (37), (38), (39) are connected by the relation

M(D) = S−1
D . (42)
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8 Conclusions

In this paper, we have considered the method of the D-brane constructions in superstring theory
corresponding to Calabi–Yau compactification where Calabi–Yau manifolds appear as hypersur-
faces in the weighted projective space. In the large volume “phase” of the Kähler moduli space
this construction provides clear geometric picture of the D-brane spectrum. We find that this
construction gives clear picture of the large volume monodromy transformations. All the above
is a simple particular case of a more ambitious program which proposes for type IIB superstring
theory an identification of the D-branes by objects of a derived category of the category of
coherent sheaves [7, 8] (see also [9]).
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