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We review some recent results concerning the properties of a spherically symmetric global
monopole in (D = d+2)-dimensional general relativity. Some common features of monopole
solutions are found independently of the choice of the symmetry-breaking potential. Thus,
the solutions show six types of qualitative behavior and can contain at most one simple hori-
zon. For the standard Mexican hat (Higgs) potential, we analytically find the D-dependent
range of the parameter γ (characterizing the gravitational field strength) in which there exist
globally regular solutions with a monotonically growing Higgs field, containing a horizon and
a Kantowski–Sachs (KS) cosmology outside it, with the topology of spatial sections R× S

d.
Their cosmological properties favor the idea that the standard Big Bang might be replaced
with a nonsingular static core and a horizon appearing as a result of some symmetry-breaking
phase transition on the Planck energy scale. We have also found families of new solutions
with an oscillating Higgs field, parametrized by the number of its knots. All such solutions
describe space-times of finite size, possessing a regular center, a horizon and a singularity
beyond it.

According to the Standard cosmological model, the Universe has been expanding and cooling
from a split second after the Big Bang to the present time and remained uniform and isotropic
on the large in doing so. In the process of its evolution, the Universe has experienced a chain
of phase transitions with spontaneous symmetry breaking, including Grand Unification and
electroweak phase transitions, formation of neutrons and protons from quarks, recombination,
and so forth. Regions with spontaneously broken symmetry which are more than the correlation
length apart, are statistically independent. At interfaces between these regions, the so-called
topological defects necessarily arise.

A systematic exposition of the potential role of topological defects in our Universe has been
provided by Vilenkin and Shellard [1]; see there also the necessary references to the previous
work. The particular types of defects: domain walls, strings, monopoles, or textures are deter-
mined by the topological properties of vacuum. If the vacuum manifold after the breakdown is
not shrinkable to a point, then solutions of Polyakov–’t Hooft monopole type appear in quantum
field theory.

Spontaneous symmetry breaking is well known to play a fundamental role in modern attempts
to construct particle theories. In this context, one mostly deals with internal symmetries rather
than with those associated with space-time transformations: examples are the Grand Unification
symmetry, the electroweak and isotopic symmetries and supersymmetry, whose transformations
mix bosons and fermions. Topological defects, caused by spontaneous breaking of internal
symmetries independent of space-time coordinates, are called global.

A fundamental property of global symmetry violation is the Goldstone degree of freedom. In
the monopole case, the term related to the Goldstone boson in the energy-momentum tensor
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decreases rather slowly away from the center. As a result, the total energy of a global monopole
grows linearly with distance, in other words, diverges. Without gravity such a divergence is
a general property of spontaneously broken global symmetries. The self-gravity of a global
monopole, if not entirely removes this difficulty, allows one to consider it from a new standpoint.

We have performed a general study of the properties of static, spherically symmetric global
monopoles in general relativity [2]. Most of the results were extended [3] to spherically symmetric
configurations of arbitrary dimension with the topology R × R+ × S

d, but in this presentation
we shall for simplicity mostly adhere to D = 4 (d = 2). In this case, the Lagrangian is taken in
the form

L =
1
2
∂µφa∂µφa − V (φ) +

R

16πG
, (1)

where R is the scalar curvature, G is the gravitational constant, φa, a = 1, 2, 3 is a scalar field
multiplet, and V (φ) is a symmetry-breaking potential depending on φ = ±√

φaφa. We assume
the static, spherically symmetric metric

ds2 = A(ρ)dt2 − dρ2

A(ρ)
− r2(ρ)dΩ2 (2)

(dΩ2 ≡ dθ2 + sin2 θ dϕ2) and a “hedgehog” scalar field configuration:

φa = φ(ρ)na, na = {sin θ cos ϕ, sin θ sin ϕ, cos θ} . (3)

Without loss of generality we take ρ ≥ 0 and attribute ρ = 0 to a regular center.
Our approach was different from most of previous studies which had used the boundary

condition that V = 0 at spatial infinity. We did not even require the existence of a spatial
asymptotic. Instead, we required regularity at the center and tried to observe the properties of
the whole set of global monopole solutions. Also, instead of dealing only with a particular form
of the symmetry breaking potential (usually the Mexican hat potential), we found some general
features of solutions valid independently of the particular shape of V (φ). The main results are
as follows.

The Einstein equations lead to r′′ ≤ 0. Since at a regular center r′ > 0, this leaves three
possibilities for the function r(ρ):

(a) monotonic growth with a decreasing slope, but r → ∞ as ρ → ∞,

(b) monotonic growth with r → rmax < ∞ as ρ → ∞, and

(c) growth up to rmax at some ρ1 < ∞ and further decrease, reaching r = 0 at some finite
ρ2 > ρ1.

The other metric function, A(ρ), determines the causal structure of space-time: zeros of any
order of A(ρ) correspond to Killing horizon of the same order.

Proposition 1. Under the assumption that φ2 < 1/(8πG) in the whole space, our system with
a regular center can have either no horizon, or one simple horizon, and in the latter case its
global structure is the same as that of de Sitter space-time.

For nonnegative V (φ) there is no restriction on the magnitude of φ.

Proposition 2. If V (φ) ≥ 0, our system with a regular center can have either no horizon, or
one simple horizon, and in the latter case its global structure is the same as that of de Sitter
space-time.
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Outside the horizon, in the so-called T-region, ρ becomes a temporal coordinate, and the
geometry corresponds to homogeneous anisotropic cosmological models of Kantowski–Sachs (KS)
type, where spatial sections have the topology R × S

2.
Thus, depending on the behavior of r(ρ) (items a–c) and A(ρ) (with or without a horizon),

all possible solutions can be divided into six qualitatively different classes. There are two more
general results valid for any nonnegative potentials.

Proposition 3. If V (φ) ≥ 0, the second center r = 0, if any, is singular.

Proposition 4. If V (φ) ≥ 0 and the solution is asymptotically flat, the mass M of the global
monopole is negative.

In Proposition 4, asymptotic flatness is understood up to the solid angle deficit ∆ < 1: at
large ρ we have r(ρ) ≈ ρ and

ds2 =
(

1 − ∆
α2

− 2GM

r

)
dt2 −

(
1 − ∆

α2
− 2GM

r

)−1

dr2 − r2dΩ2, (4)

where α is a model-dependent constant. To our knowledge, Proposition 4 had been obtained
previously only numerically for the particular potential (5) (see below).

Thus, even before studying particular solutions, we have a more or less complete knowledge
of what can be expected from such global monopole systems.

We further considered [2] the most frequently used Mexican hat potential

V (φ) =
1
4
λ

(
φaφa − η2

)2 =
1
4
η4λ

(
f2 − 1

)2
, (5)

where η > 0 characterizes the energy of symmetry breaking, λ is a dimensionless coupling con-
stant and f(ρ) = φ(ρ)/η is the normalized field magnitude playing the role of an order parameter.
The model has a global SO(3) symmetry, which can be spontaneously broken to SO(2) due to
the potential wells (V = 0) at f = ±1.

Our analytical and numerical study for the potential (5) has confirmed previous results of
other authors concerning configurations with a monotonically growing field magnitude f .

The solution properties are basically governed by the values of the single dimensionless pa-
rameter

γ = 8πGη2, (6)

characterizing the gravitational field strength. Thus, for γ < 1 the solutions have a spatial
asymptotic with the metric (4). For 1 < γ < 3, the so-called supermassive global monopole, the
solutions contain a cosmological horizon and a KS model outside it.

We have obtained analytically the upper limit γ0 = 3 for the existence of static monopole
solutions, previously found numerically by Liebling [4]. To do so, we have used the fact that
near a critical value of γ the field magnitude is small everywhere inside the horizon, making it
possible to formulate a well-posed eigenvalue problem for the field f against the background of
the de Sitter metric (which solves the Einstein equations in case f ≡ 0). The linear equation
for f has the form

d

dx

[
x2

(
1 − x2

x2
h

)
df

dx

]
− (

2 − x2
)
f = 0, (7)

where x is a dimensionless variable proportional to r and xh =
√

12/γ is the value of x at the
horizon. The boundary conditions are

f
∣∣∣
x=0

= 0, |f(xh)| < ∞. (8)
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Nontrivial solutions of (7) with these boundary conditions exist for the sequence of eigenvalues

γn =
3

(n + 1/2)(n + 2)
, n = 0, 1, 2, . . . , (9)

where n is the number of nodes of the corresponding eigenfunctions fn(x). The eigenvalue γ0 = 3
is the sought-for critical value of γ for monotonically growing f . In case γ > 3 static monopole
solutions are absent.

The solutions with n ≥ 1 form new families, which we had not met in the existing literature.
In these solutions, existing for γ < γn, the field function f (which has no reason to be small
when γ is far from γn), changes its sign n times. All such solutions turn out to have a singularity
(f → ∞, r → 0) at some finite value of ρ beyond the horizon.

The solutions with a static nonsingular monopole core and a KS cosmological model in
a T-region (A(ρ) < 0) outside the horizon are of particular interest. Changing the notations,
t → y ∈ R, and introducing the proper time of a comoving observer τ =

∫
dρ/

√|A(ρ)|, we can
rewrite the metric as

ds2 = dτ2 − |A(τ)|dy2 − r2(τ)dΩ2. (10)

The model expands in one of the directions (along the y axis) from zero at the horizon (say,
τ = 0) to finite values at large τ in a process which, on its early stage, resembles inflation. In two
other directions, corresponding to S

2, the model expands from a finite size and finite expansion
rate at τ = 0 to a linear regime at large τ . Like other regular models with the de Sitter causal
structure, i.e., a static core and expansion beyond a horizon, these models drastically differ
from standard Big Bang models in that the expansion starts from a nonsingular surface, and
cosmological comoving observers can receive information in the form of particles and light quanta
from the static region, situated in the absolute past with respect to them. Moreover, in our case
the static core is nonsingular, and it is thus an example of an entirely nonsingular cosmology in
the spirit of the views advocated by Gliner and Dymnikova [5, 6] (see also references therein).

The nonzero symmetry-breaking potential plays the role of a time-dependent cosmological
constant, a kind of hidden vacuum matter. For an observer in the T-region the potential
decreases with time, and the hidden vacuum matter gradually disappears.

The present simple model cannot be directly applied to our Universe (in particular, due to
lack of isotropization), it can at most pretend to describe the earliest, near-Planckian stage in
an approximate, classical manner. It nevertheless may be considered as an argument in favor
of the idea that the standard Big Bang might be replaced with a nonsingular static core and a
horizon appearing as a result of some symmetry-breaking phase transition on the Planck energy
scale.

As another cosmological application of the global monopole, one should mention the concept
of topological inflation, related to the existence of a de Sitter core of the monopole, which can
inflate due to its instability [7].

In Ref. [3] we have extended the above consideration to (D = d + 2)-dimensional general
relativity, with the space-time topology R × R+ × S

d. The qualitative features of the solutions
are mostly preserved, in particular, there are the same six types of behavior, and Propositions
1–4 still hold. Outside the horizon (if any), the metric again corresponds to a Kantowski–Sachs
type cosmology, now with the topology of spatial sections R × S

d.
For the Mexican hat potential (5), the strength parameter is defined as γ = κ2η2, where κ2 is

the gravitational constant of D-dimensional theory and η is the symmetry breaking characteristic
from (5). There are again two critical values of γ for each D: for monotonic f(ρ), solutions
with static spatial infinity exist with γ < d− 1, while solutions with a horizon and an infinitely
expanding KS exterior correspond to d − 1 < γ < 2d(d + 1)/(d + 2). For solutions where f(ρ)
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changes its sign n times, instead of (9), the critical values of γ are

γn =
2d(d + 1)

(2n + 1)(2n + d + 2)
, (11)

which reduces to (9) when d = 2.
In the important case when the horizon is far from the monopole core, the temporal evolution

of the KS metric is described analytically. The Kantowski–Sachs space-time contains a subspace
with a closed Friedmann–Robertson–Walker metric. Our estimates show that the 5-dimensional
global monopole model is in principle able to give plausible cosmological parameters. However,
within our macroscopic theory without specifying the physical nature of vacuum we cannot
unequivocally explain why the fourth spatial dimension (the one that played the role of time in
the static region) is not observable. Quantitative estimates certainly require a more complete
model including further phase transitions, one of which should explain the unobservable nature
of the extra dimension.
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