

# The CLuED0 Linux Cluster CHEP 2003

Bill Lee, Roger Moore and Dugan O'Neil

Florida State University and Michigan State University

#### **Outline**



- Introduction
- Cluster Configuration
- Cluster Management Software (CLuMP)
- Administrative Model
- Code Development Platform
- Batch Processing Farm (PBS)
- Data Access (SAM)
- Summary

### Introduction



- CLuED0 is the cluster of all DØ Linux desktop machines.
- Currently 250 nodes (and growing) from 50 institutes with over 500 users.
- Unique management tools and management model have been developed. Management by users.
- Primarily a desktop cluster, but also provides significant functionality for data access, code development, batch processing, etc.

## History



- DØ Computing Early 2000
  - d0mino a 176-processor SGI Origin 2000 system
  - SGI cluster
  - Windows NT cluster with main central servers
  - DØ Fermi Linux cluster
  - Unclustered self-managed Linux PCs
  - Various X terminals

# **CLuED0** Beginnings



- Michigan State University (MSU) Post Docs decide to cluster some MSU Linux desktops together.
- Other groups join, first in the same building, then spreading to other buildings. CLuED0 is born.
  - The initial goal of CLuED0 is to provide the advantages of a cluster while still providing users the ability to configure their desktop.
- Fermilab requires a single Linux cluster at DØ for security reasons.
- All Linux PCs at DØ are now in the CLuED0 cluster.

# Cluster Configuration

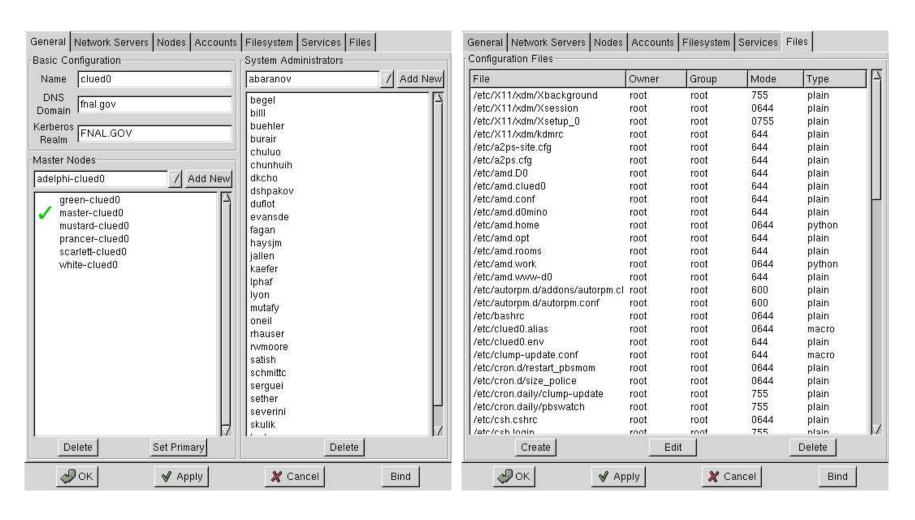


- Currently RedHat 7.1 based cluster, planned upgrade to RedHat 8.1 when available.
- Machines in 6 different buildings on Fermilab site.
- One rack of servers in central location at DØ provides web, LDAP, batch and data access services. Location for institute-owned disk servers.
- Home directories and DØ code distributions mounted from DØ central services (8 processor SGI). DØ provides nightly backup.
- Slave LDAP servers in each building with a failover chain to all other buildings.

#### **CLuMP**



- CLuED0 is NOT a homogeneous system
- Very diverse hardware
  - P2,P3,P4,AMD,Cyrix
  - Speed 200MHz-2.4GHz
  - Memory 64Mb-4Gb
  - Disk 6Gb-2.5Tb
- Diverse usages and priority functionality (50 institutes).
- Configurations in central database (currently LDAP, soon moving to mysql). Custom schema and management software (CLuMP).


#### **CLuMP**



- CLuMP allows us to tell LDAP about the structure of our cluster
  - Configuration for cluster, netgroup, nodes.
  - Store configuration files at all three levels (local overrides general)
  - built-in users, autofs config
- Configuration files can also be automatically generated from the database using python scripts. For example, /etc/hosts dynamically generated from global list of nodes.
- Provides command line and GUI interfaces.

#### **CLuMP**





## **Administrative Model**



- No computing professionals available "on the ground". Computing division maintains home directories, backups, central code repository, but do not touch clustered Linux machines.
- CLuED0 administration is provided solely from volunteer administrators (users) committed to contribute approximately O.2FTE. Recognized as official DØ service work.
- Any user can become an administrator simply by volunteering to take a responsibility.

## **Administrative Model**



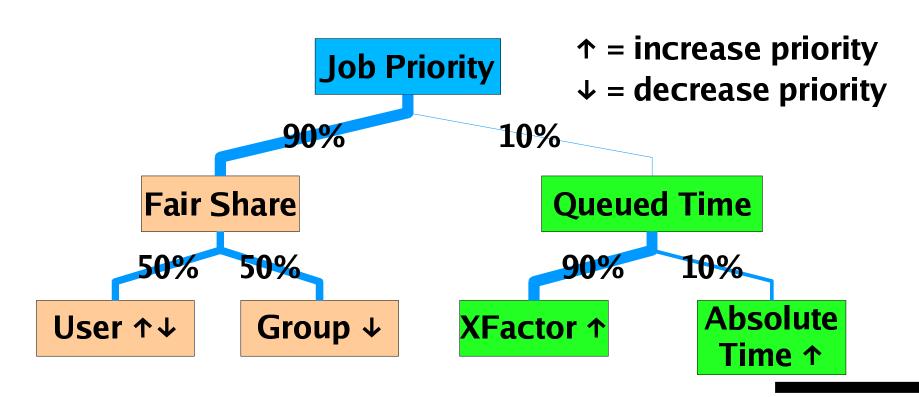
- Philosophy is to have at least 2 people identified in each building who know what they are doing and have root access to all machines. Users should be very comfortable approaching their local admins.
- Also designate a local contact person for each institute who is permitted to have root access to all the nodes belonging to that institute.
- Institutes buy/manage their own local disks (scratch areas) and are responsible for backing up their disks (or not). Very cheap place to put disk.

## Code Development Platform



- Single most important code development platform for the experiment.
- Nightly builds of DØ code distributions are available on every machine via an NFS mount of the centrally maintained build-disk.
- Executables compiled on CLuED0 machines can be seamlessly sent to Linux-based central computing facilities.
- Besides basic desktop interface this is the most important cluster functionality.

## **Batch Processing Farm**




- Run batch system on all nodes. OpenPBS with MAUI scheduler.
- So far has provided the majority of the analysis CPU used by the experiment (central analysis facility now also available)

#### **Fairshare**



Fairshare employed by institute and by user. Most of batch priority is assigned based on usage from institute relative to institute contribution to the cluster (CPU power).



## Data Access (SAM)



- All DØ data access is managed through SAM (Sequential Access via Metadata). See other talks at this conference.
- CLuED0 is a SAM station currently capable of transferring approximately 1Tb per day from central services to the cluster. Can be upgraded.
- Central 1Tb disk cache in central rack at the DØ
- Data transferred from tape or other stations to CLuED0 central cache. Client nodes then transfer (rcp) files to SAM-managed cache on local nodes. Interfaced to PBS.

## Summary



- CLuED0 is a large desktop cluster at DØ (Fermilab).
- Primary functionality is desktop (email, web, office) but has been invaluable as code development and batch processing resource.
- Custom management software written (CLuMP).
  VERY useful for centralizing cluster configuration.
- Administration done by users (physicists) not computing professionals.