Sensor alignment by tracks

A. Heikkinen, V. Karimäki, T. Lampén and T. Lindén Helsinki Institute of Physics, University of Helsinki

CHEP03, March 24-28, 2003
La Jolla, California

Outline:

- Introduction
- Description of the alignment algorithm
- Performance with real data
- Performance studies with simulated pixel detector
- Summary

Introduction - tracking sensor alignment

Characteristics of typical inner tracking detectors being built:

- large dimensions, from a few dm up to a few meters
- high sensor hit precision, from a few microns to tens of microns
- built out of hundreds or thousands of sensors

It follows that precise determination of sensor positions is a big challenge for:

- assembly precision, typically a few hundred $\mu \mathrm{m}$
- survey measurements, precision of the order $\mathbf{1 0 0} \mu \mathrm{m}$ or better
- monitoring devices to monitor sensor movements at run time
- final position calibration i.e. detector alignment to be made by reconstructed tracks

In this work we introduce an efficient algorithm to determine corrections to sensor locations and orientations by tracks.

- translation plus tilt correction for sensors (up to 6 parameters per sensor)
- straightforward mathematical formalism
- no big matrix inversions
- applies to detector setups with very large number of sensors

Working in local coordinate system

Local (sensor) coordinate system:

Alignment corrections $\Delta u, \Delta v, \Delta w$: correction for sensor origin

Alignment corrections $\Delta \alpha, \Delta \beta, \Delta \gamma$: correction for rotation local \Leftrightarrow global

Benefits of working in local coordinate system:

- hit positions are invariant
- only trajectory impact point moves as a function of sensor translation and tilt

Description of the algorithm

- the task is to correct the coordinate transformations:

$$
\overline{\mathbf{q}}=\mathbf{R}\left(\overline{\mathbf{r}}-\overline{\mathbf{r}}_{0}\right)
$$

from global system to sensor local system

- corrected transformation reads:

$$
\begin{array}{ll}
\overline{\mathbf{q}}^{\prime}=\Delta \mathbf{R} \mathbf{R}\left(\overline{\mathbf{r}}-\overline{\mathbf{r}}_{0}\right)-\Delta \overline{\mathbf{q}} & \text { where: } \\
\Delta \overline{\mathbf{q}}=(\Delta u, \Delta v, \Delta w) & \text { (sensor shift) } \\
\Delta \mathbf{R}=\Delta \mathbf{R}(\Delta \alpha, \Delta \beta, \Delta \gamma) & \text { (sensor tilt) }
\end{array}
$$

- how does the trajectory impact point $\overline{\mathrm{q}}_{x}$ transform under a sensor shift and tilt correction: $\overline{\mathbf{q}}_{x} \rightarrow \overline{\mathbf{q}}_{x}^{\prime}$?
- depends also on the trajectory direction $\hat{\mathrm{s}}$ at the impact point:

$$
\overline{\mathbf{q}}_{x}^{\prime}=\mathbf{R}^{\prime}\left(\overline{\mathbf{r}}_{x}-\overline{\mathbf{r}}_{0}\right)+\frac{\left[\Delta \overline{\mathbf{q}}-\mathbf{R}^{\prime}\left(\overline{\mathbf{r}}_{x}-\overline{\mathbf{r}}_{0}\right)\right] \cdot \hat{\mathbf{w}}}{\mathbf{R}^{\prime} \hat{\mathbf{s}} \cdot \hat{\mathbf{w}}} \mathbf{R}^{\prime} \hat{\mathbf{s}}-\Delta \overline{\mathbf{q}}
$$

where $\mathbf{R}^{\prime}=\Delta \mathbf{R} \mathbf{R}$

- this is the key formula of the algorithm
- residuals $\bar{\varepsilon}=$ hit position minus impact position
- separation of the χ^{2} function: $\chi^{2}=\sum_{\text {sensors }} \chi_{\text {sensor }}^{2}$
- minimizing separately each $\chi_{\text {sensor }}^{2}$ and iterating
- one iteration cycle: tracks refitting followed by minimization of all $\chi_{\text {sensor }}^{2}$

Simplified illustration - how iteration works

Iteration which involves tracks refitting and χ^{2} minimization for alignment parameters of all alignable sensors is repeated until convergence is observed.

Algorithm performance studies

We have tested the algorithm both with real data and by simulation:

- test beam data from Helsinki Si Beam Telescope (SiBT) at the CERN H2 beam
- pixel vertex detector barrel model (CMS-like) with two layers

1. SiBT:

- Eight silicon strip sensors, $5 \times 5 \mathbf{c m}^{2}$, total length of array $55 \mathbf{~ c m}$
- Data taken with no field and 300 GeV muons

2. Vertex detector (pixel barrel):

- sensors $16 \mathbf{m m} \times 64 \mathrm{~mm}$
- layers at 4.4 cm and $7.3 \mathrm{~cm}, L=50 \mathrm{~cm}$
- 144 sensors in layer 1, 240 in layer 2
- sensor overlaps in $r \varphi$ about 4%
- no overlaps in z
- used tracks with $p_{T}>\mathbf{0 . 8} \mathbf{~ G e V}$
- beam-line and vertex z-constraint
- Gaussian smeared hits plus m.s.

Algorithm performance with test beam data

Helsinki Si Beam Telescope at CERN H2 beam

pitch $=50 \mu \mathbf{m}$

Strip detectors:
5 alignment parameters per sensor
Beam spread $= \pm 10$ mrad (stereo effect) Full sensor area coverage by beam

Used 3000 tracks for alignment of the tilted sensor (5)

Obtained alignment parameters:

Parameter	At 0 degrees	At 30 degrees
$\Delta u(\mu \mathrm{~m})$	186.0 ± 0.1	-264.7 ± 0.1
$\Delta w(\mu \mathrm{~m})$	200 ± 20	-131 ± 6
$\Delta \alpha(\mathrm{mrad})$	5.6 ± 0.7	12.9 ± 0.9
$\Delta \beta(\mathrm{mrad})$	5.8 ± 0.9	32.59 ± 0.04
$\Delta \gamma(\mathrm{mrad})$	-14.12 ± 0.01	-15.86 ± 0.01

Obtained resolutions:

- Layer 2 fixed
- Layer 1 sensors mis-aligned at random: flat within $\pm 100 \mu \mathbf{m}$ and ± 10 mrad
- $6 \times 144=\mathbf{8 6 4}$ parameters to be fitted
- ≈ 500 tracks per sensor in the mean

Figure:

Convergence of 6 parameters for one sensor
Same behaviour for all the other 143 sensors
In this case 3-4 iteration cycles are sufficient

Pixel simulation: layer 2 fixed, layer 1 mis-aligned (II)

Fitted versus true parameters- all misaligned sensors

Fitted minus true parameters- all misaligned sensors

Extreme case: Only one sensor fixed, 383 mis-aligned (I)

- Fixed sensor: in layer 2, near $\mathbf{z}=\mathbf{0}, \varphi=0$
- The rest to be aligned
- $6 \times 383=2298$ parameters fitted
- 2×10^{5} tracks used per iteration cycle
- Up to 300 iterations
- In figure: parameter convergence for a sensor farthest away from the reference sensor
- Faster convergence for sensors closer to the reference sensor

Extreme case: Only one sensor fixed, 383 mis-aligned (II)

Fitted versus true parameters- all misaligned sensors

Fitted minus true parameters- all misaligned sensors

Summary

Effective sensor alignment algorithm with the following basic features:

- formulation in local coordinate system
- trajectory impact point coordinates as a function of offsets and tilts
- straightforward mathematics
- separation of the χ^{2} function in terms of sensors
- small matrix formalism (max 6×6)
- minimization by iterative steps:

1. minimization of all $\chi_{\text {sensor }}^{2}$ separately
2. refitting tracks, back to 1 .

Demonstration of the performance

- test beam data with Si strip telescope, precise 5 parameters alignment
- 2-layer pixel barrel alignment simulation, two options:

1. layer 2 fixed, layer 1 sensors to be aligned

- all 864 parameters obtained with good precision

2. only one sensor fixed, the rest to be aligned

- all 2298 parameters converge with fairly good precision

