

Sensor alignment by tracks

A. Heikkinen, <u>V. Karimäki</u>, T. Lampén and T. Lindén Helsinki Institute of Physics, University of Helsinki

CHEP03, March 24-28, 2003

La Jolla, California

Outline:

- Introduction
- Description of the alignment algorithm
- Performance with real data
- Performance studies with simulated pixel detector
- Summary

Characteristics of typical inner tracking detectors being built:

- large dimensions, from a few dm up to a few meters
- high sensor hit precision, from a few microns to tens of microns
- built out of hundreds or thousands of sensors
- It follows that precise determination of sensor positions is a big challenge for:
 - \bullet assembly precision, typically a few hundred $\mu {\bf m}$
 - $\bullet\,$ survey measurements, precision of the order 100 μm or better
 - monitoring devices to monitor sensor movements at run time
 - final position calibration i.e. detector alignment to be made by reconstructed tracks

In this work we introduce an efficient algorithm to determine corrections to sensor locations and orientations by tracks.

- translation plus tilt correction for sensors (up to 6 parameters per sensor)
- straightforward mathematical formalism
- no big matrix inversions
- applies to detector setups with very large number of sensors

Local (sensor) coordinate system:

Alignment corrections $\Delta u, \Delta v, \Delta w$: correction for sensor origin

Alignment corrections $\Delta \alpha, \Delta \beta, \Delta \gamma$: correction for rotation local \Leftrightarrow global

Benefits of working in local coordinate system:

- hit positions are invariant
- only trajectory impact point moves as a function of sensor translation and tilt

• the task is to correct the coordinate transformations:

 $ar{\mathbf{q}} = \mathbf{R}(ar{\mathbf{r}} - ar{\mathbf{r}}_0)$

from global system to sensor local system

• corrected transformation reads:

$$\begin{split} \bar{\mathbf{q}}' &= \Delta \mathbf{R} \, \mathbf{R} (\bar{\mathbf{r}} - \bar{\mathbf{r}}_0) - \Delta \bar{\mathbf{q}} & \text{where:} \\ \Delta \bar{\mathbf{q}} &= (\Delta u, \Delta v, \Delta w) & \text{(sensor shift)} \\ \Delta \mathbf{R} &= \Delta \mathbf{R} (\Delta \alpha, \Delta \beta, \Delta \gamma) & \text{(sensor tilt)} \end{split}$$

- how does the trajectory impact point $\bar{\mathbf{q}}_x$ transform under a sensor shift and tilt correction: $\bar{\mathbf{q}}_x \to \bar{\mathbf{q}}'_x$?
- \bullet depends also on the trajectory direction $\hat{\mathbf{s}}$ at the impact point:

$$\bar{\mathbf{q}}'_x = \mathbf{R}'(\bar{\mathbf{r}}_x - \bar{\mathbf{r}}_0) + \frac{[\Delta \bar{\mathbf{q}} - \mathbf{R}'(\bar{\mathbf{r}}_x - \bar{\mathbf{r}}_0)] \cdot \hat{\mathbf{w}}}{\mathbf{R}' \hat{\mathbf{s}} \cdot \hat{\mathbf{w}}} \mathbf{R}' \hat{\mathbf{s}} - \Delta \bar{\mathbf{q}}$$

where $\mathbf{R}' = \Delta \mathbf{R} \, \mathbf{R}$

- this is the key formula of the algorithm
- residuals $\bar{\varepsilon}$ = hit position minus impact position
- separation of the χ^2 function: $\chi^2 = \sum_{sensors} \chi^2_{sensor}$
- minimizing separately each χ^2_{sensor} and iterating
- one iteration cycle: tracks refitting followed by minimization of all χ^2_{sensor}

Sensor alignment by tracks (page 4)

Simplified illustration - how iteration works

Iteration which involves tracks refitting and χ^2 minimization for alignment parameters of all alignable sensors is repeated until convergence is observed.

CHEP03, March 24-28, 2003 La Jolla, California

Sensor alignment by tracks (page 5)

We have tested the algorithm both with real data and by simulation:

- test beam data from Helsinki Si Beam Telescope (SiBT) at the CERN H2 beam
- pixel vertex detector barrel model (CMS-like) with two layers

1. SiBT:

- Eight silicon strip sensors, $5\times 5~{\rm cm}^2$, total length of array 55 cm
- Data taken with no field and 300 GeV muons
- 2. Vertex detector (pixel barrel):
 - sensors $16 \,\mathrm{mm} \times 64 \,\mathrm{mm}$
 - layers at 4.4 cm and 7.3 cm, L = 50 cm
 - 144 sensors in layer 1, 240 in layer 2
 - sensor overlaps in $r\varphi$ about 4 %
 - no overlaps in z

CHEP03. March 24-28. 2003

La Jolla, California

- used tracks with $p_T>$ 0.8 GeV
- beam-line and vertex z-constraint
- Gaussian smeared hits plus m.s.

Sensor alignment by tracks (page 6)

Algorithm performance with test beam data

Used 3000 tracks for alignment of the tilted sensor (5)

Obtained angliment parameters.		
Parameter	At 0 degrees	At 30 degrees
$\Delta u(\mu {\sf m})$	$186.0{\pm}0.1$	-264.7±0.1
$\Delta w(\mu {\sf m})$	200±20	-131±6
$\Delta lpha(mrad)$	5.6±0.7	$12.9{\pm}0.9$
$\Deltaeta(mrad)$	$5.8{\pm}0.9$	32.59±0.04
$\Delta\gamma(mrad)$	$-14.12{\pm}0.01$	$-15.86{\pm}0.01$

Obtained alignment paramet

Obtained resolutions:

CHEP03, March 24-28, 2003 La Jolla, California

Sensor alignment by tracks (page 7)

Iteration of 6 alignment parameters for a Pixel sensor

• Layer 2 fixed

- Layer 1 sensors mis-aligned at random: flat within $\pm 100 \,\mu$ m and $\pm 10 \,$ mrad
- $6 \times 144 = 864$ parameters to be fitted
- ≈ 500 tracks per sensor in the mean

Figure:

Convergence of 6 parameters for one sensor

In this case 3–4 iteration cycles are sufficient

Iteration cycle

6

2

CHEP03, March 24-28, 2003 La Jolla, California

Sensor alignment by tracks (page 8)

Iteration cycle

0.5

Fitted versus true parameters - all misaligned sensors

Fitted minus true parameters - all misaligned sensors

CHEP03, March 24-28, 2003 La Jolla, California

Sensor alignment by tracks (page 9)

Iteration of 6 alignment parameters for a Pixel sensor

- Fixed sensor: in layer 2, near z=0, $\varphi = 0$
- The rest to be aligned
- $6 \times 383 = 2298$ parameters fitted
- 2×10^5 tracks used per iteration cycle
- Up to 300 iterations

CHEP03, March 24-28, 2003

La Jolla, California

- In figure: parameter convergence for a sensor farthest away from the reference sensor
- Faster convergence for sensors closer to the reference sensor

Sensor alignment by tracks (page 10)

Extreme case: Only one sensor fixed, 383 mis-aligned (II)

Fitted versus true parameters - all misaligned sensors

20

20

20

þ

Q

0

CHEP03, March 24-28, 2003 La Jolla, California

Sensor alignment by tracks (page 11)

V. Karimäki/HIP Helsinki Institute of Physics, University of Helsinki

Effective sensor alignment algorithm with the following basic features:

- formulation in local coordinate system
- trajectory impact point coordinates as a function of offsets and tilts
- straightforward mathematics
- separation of the χ^2 function in terms of sensors
- small matrix formalism (max 6×6)
- minimization by iterative steps:
- 1. minimization of all χ^2_{sensor} separately
- 2. refitting tracks, back to 1.

Demonstration of the performance

- test beam data with Si strip telescope, precise 5 parameters alignment
- 2-layer pixel barrel alignment simulation, two options:
- 1. layer 2 fixed, layer 1 sensors to be aligned
 - all 864 parameters obtained with good precision
- 2. only one sensor fixed, the rest to be aligned
 - all 2298 parameters converge with fairly good precision