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Introduction

For electrons the dominant contribution to energy loss is
bremsstrahlung.

A well-known model of the bremsstrahlung energy
loss is due tdBethe and Heitler.
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Introduction C\ER/W
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The optimal treatment of radiative energy loss within theKalman
filter formalism is to correct the momentum part of the state
vector with the mean value of energy losand to add thevariance
of the energy losglistribution to the relevant part of the
covariance matrix,

u= 2—€ — B_t, 0’2 — 3¢ _4"°,

which should ensureunbiased estimate®f track parameters
and theassociated uncertainties [1]

[1] D. Stampfer et al., Track fitting with energy loss.Computer Physics Communicatiori® (1994) 157
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Introduction

 The Kalman filter is proved to be optimal only wherall
probability densities involved are Gaussian

* Approximating the Bethe-Heitler distribution with a single
Gaussian is aguite crude approximation.

* |tis plausible that anon-linear estimator which takes the
actual shape of the distribution better into accountan do
better.
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Introduction

* The basic idea is to model th&ethe-Heltler distribution as a
Gaussian mixture g(z) instead of a single Gaussian, the
different components modellingdifferent degrees of hardness
of the bremsstrahlungin the layer under consideration:
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* The natural description of thestate vectorthen also becomes a
Gaussian mixture

* A non-linear generalizationof the Kalman filter, the Gaussian-
sum filter (GSF) [2, 3] is able to treat such state vectors
appropriately.

* This algorithm has been implemented in the reconstruction
software of the CMS tracker at CERN.

* The GSF resembles set of Kalman filters running in parallel,
each Kalman filter corresponding to one of the components of
the state vector mixture.

[2] R. Frahwirth, Track fitting with non-Gaussian noise. Computer Physics Communicatiori0 (1997) 1.

[3] R. Fruhwirth and S. Frahwirth-Schnatter, On the treatment of energy loss in track fitting. Computer Physics Communicatiorisl0 (1998) 80
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| Approximating mixture

Two kinds of distances between distribution and mixture
have been minimized:

model Gaussian mixture

. 00 )
Kullback-Leibler —» = [ o) o] £

Cumulative ﬁ F(z) = G(2)| dz
distribution 7

functions

with respect to themean, the variance and the weighof
each of the components of the mixture.
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| Approximating mixture

Distances as a function of path length
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| Approximating mixture
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| Approximating mixture

* Polynomials have been fitted to the weights, means and
variancesof the components as a function of the radiation
length.
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Component reduction

* Approximation of energy loss by a Gaussian mixturamounts
to a convolution with the current state, which in general also is
a Gaussian mixture.

e A strict application of the GSFalgorithm quickly leads to a
prohibitively large number of componentsdue to the
combinatorics involved each time a layer Is traversed.

 The number of componentsmust therefore repeatedly be
reduced to a predefined maximum

* The loss of information due to this procedure should be kept
assmall as possible

Are Strandlie, CERN CHEPO3, San Diego, 25.03.03



Component reduction
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Component reduction

* Two strategies have been evaluated:

1) Keeping the components with theN largest weights

2) Clustering components which are closaccording to some
metric in the five-dimensional parameter space of the
tracks.

e Thefirst approach is clearly inferior, sincenone of the first
two momentsof the estimated parameters turn out to be
correctly described

* |In the second approach thedopted metric is the Kullback-
Leibler distance defined earlier.
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Simulation studies
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Simulation studies

* Simplified simulation, bremsstrahlung simulated bysampling
from Bethe-Heitler distribution. Multiple scattering and
lonization energy loss have been turned off.

e 10 GeV/c transverse momentunelectrons in the barrel
(|pseudo-rapidity| < 1).

* Full knowledge of amount and positionof material.

* Considering estimates of charge over absolute value of
momentum (g/p) at thetransverse impact point (TIP), I.e.
point of closest approach in transverse plane to vertex

* Collecting reconstructed hitsfrom knowledge of true hits
constituting the track - no pattern recognition involved.
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Simulation studies

* Theimplementation of the GSFin the CMS reconstruction
software wasquite straightforward, since most of themain
building blocks of the standard Kalman filter could be re-
used

 The main extensionas compared to the Kalman filter is the
necessity of describing the state vector as a Gaussian mixture
rather than a single Gaussian.

* SinceC++ allows a state-vector class to be polymorphithese
complicationscan be hidden inside such a class minimizing
the need of modifying other basic components.
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Simulation studies

| predicted PDF at TIP in q/p
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Simulation studies

Estimated g/p, simulating from mixture
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Simulation studies

Estimated g/p, simulating from Bethe-Heitler
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Simulation studies

Chisquare/ndof with respect to flat distribution
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Simulation studies

Residuals (estimated g/p with respect to true value) at TIP
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Simulation studies
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Simulation studies
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Simulation studies

Half-width of interval covering 90 %
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Simulation studies

e The GSF and the KF have also been run omacks from a full
simulation using the official CMS simulation program.

* Transverse momentum and eta rangeame as in simplifed
simulation, but amount and spatial distribution of material
different.

* Results from simplified and full simulation are thusnot
Immediately quantitatively comparable

* Qualitatively, however, one expects similar relative
behaviour between the GSF and the KF
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Simulation studies
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Simulation studies

Residuals (estimated g/p with respect to true value) at TIP
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Simulation studies

Residuals at TIP, including vertex constraint
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Conclusions / outlook

* GSF has been implemented in the reconstruction software of
the CMS tracker.

 Momentum resolution for electrons significantly improved
with respect to the Kalman filter.

* Quality of estimated track parameters significantly better than
that of the Kalman filter.

* More systematic studies of tracks from full simulation needed.

* Nevertheless, safe to conclude that GSF yields substantial gain
In precision as compared to the Kalman filter.
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Conclusions / outlook

* At the very high energies accessible at LHC, also muons will
suffer from bremsstrahlung energy loss.

* With a critical energy of several hundred GeV, muon
bremsstrahlung is not relevant for the CMS tracker, but
iIndeed for the CMS muon detectors.

* |In principle a GSF such as the one described herein can be
used also for reconstruction of bremsstrahlung muons.
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Conclusions / outlook

 The GSF can in principle be expected to give improvements
with respect to the standard Kalman filter in all situations
where prior knowledge of a non-Gaussian kind can be
iIncluded In the reconstruction procedure.

* Possible examples:
- non-Gaussian measurement errors,
- non-Gaussian tails of multiple scattering.

* A GSF related to latter situation has already been
Implemented in CMS and is under evaluation.
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