J

Clarens Web Services
Architecture

CHEP 2003 March 24 - 28.

Grid Architecture, Infrastructure & Middleware

Conrad Steenberg, Eric Aslakson, Julian
Bunn, Harvey Newman

California Institute of Technology

Developed as part of the

/ P_ Particle Physics DataGrid

PPDG

Overview >

*Client/server architecture (short)
*2 implementations

Modularity

eScalabilty and fault tolerance
eSecurity and Virtual Organizations
*Persistency and session management

*\Web services builds upon the ubiquity of web technology:
*Servers, clients, standards, large body of developers
* Marhals data using XML

*Clarens NOT limited to XML, e.g. file module
*Uses XML-RPC or SOAP
*Other serialization layers can be used (e.g. CORBA)

* Main implementation is stateless

*Based on Apache server with embedded Python interpreter
*Smaller pClarens that is stateful, when needed

Client/Server Architecture |l %

*Clarens connects a client via a call routing mechanism to
services

*|mplements certain default services:

*PKI-based security (authentication and authorization)
*Service discovery

*Persistent data store for session management

*Logging
*File publishing (RO with plans for R/W)

http/https E E

Modularity

e Services implemented via plug-ins

*Location determines root of plugin-method name
e.g. system. methods reside in system directory

*Users can install modules under login directory, no system admin
intervention needed. This can be disabled if needed!

* Plug-ins accessible without server restarts

system.logout
system.*

ffile/ _init__.py file.read
file.md5
file.*

/proxy/__init.py proxy.store
proxy.retrieve
proxy.*

{root}/system/__init__.py system.auth | {home/user/clarens} /analysis/__init__.py

~user.analysis.init
~user.analysis.chi2
~user.analysis.*

ftransform/__init.py

~user.transform.init
~user.transform.fft
~user.transform.*

Scalability and fault tolerance %

-Each RPC is handled by own server process

*Crashing module doesn't affect neighbours
*Long-running requests does not block server
*Leverages SMP when available

*Server farm with load-balancing can appear as single virtual
server

* Stateless protocol
*Clients do not hold connection
eSession data stored in DB

*Clients can survive server restarts, seen temporary server
unavailability

e Authentication via X509 certificates

*Verifies certificate chain up to a list of accepted Certificate Authority certificates

*Client identified internally by the certificate distinguished name (DN) —
uniqueness ensured by CA

*Authentication at the application layer
e Authorization done using an internal VO

*VO consists of a hierarchy of groups and users
*Does not need to store client certificates, uses Dns

DN1,DN2... f=pp Patol =i SUPER ADMIN GROUPI Can create
can add users to \ groups

Specified in server *Can add users
setup file to admin group GROUP N:
Can add users Member DN2
to admin group

Security and Virtual Organization || Z

* Authorization for methods based on ACLs

*ACLs hootstrapped from .clarens_access files in module directories
*Store in DB, can be administered remotely
*Based on model of Apache .htaccess files

* E.g. for system.auth() method which is required for login:
* Order allow, deny
* Allow all in specified group(s) or list of DNs to access method
* Unless member of group(s) in deny list, or DN in deny list
* Similar for order deny, allow

» Authorization is hierarchical based on method name

*E.g. the ACL for 'system' has precedence over 'system.listMethods', making it easy to
specify ACLs with the minimum information

* System ACL Iis special

* Can specify access to all methods

* Normal module .clarens_access files cannot specify access controls for other modules

Security and Virtual Organization [l

Example .clarens_access file for system module
access= [(system ',

PRDER_DENY_ ALIOW, # O der
[0 =doesciencegrd omyO U=Pecpk 1, # Alow DOE ceddificates

[CMS, # Alow goup CM S
1 # Deny ndwiduak
[frevoked cens], # D eny group m em bers
None, None, Nonel])), #modtne, start tine,end time
(system updateM ethods,
PRDER_ALILOW _DENY, # O der

[0 =doesciencegrd org/ 0 U=Peocpk LN=Conmrd Steenbeny], # Albw

[adm in 1, # Albw gmoup adm in
0, # Deny ndividualks
0. # Deny defauk

None, None, Nonell)] #modtne, start tine,end time

Security and Virtual Organization |V

Example .clarens_access file for group module

access=[(", # m odule nam e is prepended
PRDER_DENY_ALIOW, # O er
['l, # Alow
[CaXech!, UFL], # Alow 2 gmoups
1 # Deny ndwiduak
[frevoked cens], # D eny group m em bers
None, None, Nonel])), #modtne, start tine,end time
(dekte_adm 1!, # m ethod nam e
PRDER_ALILOW _DENY, # O der

[0 =doesciencegrd org/ 0 U=Peocpk LN=Conmrd Steenbeny], # Albw

[adm in 1, # Albw gmoup adm in
0, # Deny ndividualks
0. # Deny defauk

None, None, Nonell)] #modtne, start tine,end time

*For normal modules, the module name is prepended to the method
name

e Authorization does not require changes in the certificate structure

*ACLs and VOs can be remotely administered without system
admin intervention

*VVO administration allows for multiple group administrators

*Does not require certificate revocation lists — ACLs can be used to
deny access to revoked certificates via the VO

*ACLs currently limited to method access, but can also be used for
file access control

Future: Stateful Analysis

*Grid/distributed environment so far considered 2 extremes of
proccessing/data access:
*A. Fetch remote data, process locally (0% “granularity”)

*B. Submit batch job to remote cluster, get processed data back (100%
“granularity”)

% 7 100% |

*What if another granularity is required:
*Submit job
*Get feedback
*Request more data from same job
*Data staging/job very time-consuming

Future: Stateful Analysis —Z

eConnect requesting client directly to analysis code via RPC

eStart analysis code using sceduler that can act as watchdog for
process/resource management

eUse Clarens as RPC layer
*Python as scripting language already used
May need an RPC-addressable scheduler

—BiTe
4

O |Analysis

Client

©
O

*The Clarens architecture presents users and developers with a
scalable and relatively fault-tolerant way to implement web services
In a Grid environment

*Benefits derived from the commodity Apache server platform

*VVO and authorization (ACL) administration can be done remotely
after bootstrapping essential information from text files once after
Installation

*Currently deployed in a variety of projects in the US, at CERN and
Pakistan

*More info at http://clarens.sourceforge.net

