

Designed to be modular with a

class-based component layout

and written in Java, this tool is

being further extended to allow

submission of jobs on the GRID in

a completely transparent way to

the users.

This poster presents the

software architecture, the

status of this tool and an

o v e r v i e w o f i t s f u t u r e

development and its migration

toward our main resource broker

for job submission.

Keywords: Job scheduling,

resource broker,

The STAR scheduler project was

developed to allow users to submit their

analysis jobs taking as input a logical

collection of files or a specific list of files.

The files were initially foreseen as

residing on centralized storage or on the

various distributed disks of our analysis

farm, a pool of 154 Linux Pentium-based

processing nodes with a total power

equivalent to 24,000 SI95 and 30 TB of

storage. As input, the UI uses an XML

approach with simple rules. The scheduler

analyzes the request taking advantage of

the information returned by a meta data

catalog and splits the job request into

different processes which are then

dispatched on our CPU resource pool.

request.xml

GRID Implementation

Job GRID
Scheduler

Condor-g

Batch
System

Batch
System

RCF
Scheduler

PDSF
Scheduler

Jobs

Jobs

Our prototype splits the scheduling

process into two parts. The grid-

level scheduling decides the site

and the site-level scheduling

creates the actual jobs.

FILE CATALOG
catalog:star.bnl.gov?collision=AuAu200

The integration with the file catalog allows the user to specify the

input as a query on the physics attributes (metadata). It will also

allow the scheduler to choose the files that are more accessible, or

that are on less-used machines.

The query is opaque to the scheduler and is passed to the file

catalog through an interface (abstract class), thus allowing the use

different catalog implementations. We use an implementation

based on the STAR file catalog.

MONITORING
services

In STAR we are also working on setting up a system to monitor the

load and efficiency of our clusters. We are investigating the use of

GANGLIA and its integration with globus MDS.

We plan to use this information within the policy of our scheduler to

make better decisions at a GRID level (aggregate site information)

and at a site level (machine by machine information).

User
level

STAR
Scheduler

Resource Broker

POLICY
The policy is the core of resource

brokering: it decides how to use

resources to satisfy requests. It

uses GRID middleware to gather

the information to make a good

decision.

It is an abstract class and the

implementation is chosen at

runtime, allowing us to experiment

with different schemes.

Our two current main policies are:

PassivePolicy - solves all the queries

and forms one list with all the files

requested. This list is divided

according to user requests and to

where the files are located. Each

sub-list is assigned to a different

job.

It is called passive because it does

not trigger data replication.

SiteForwardPolicy - decides

randomly on which site the request

should be dispatched, and prepares

a local scheduler execution to be

dispatched.

I t i s p a r t o f o u r G R I D

implementation.

Batch
system

JOB DESCRIPTION
The user describes his job request by writing an XML file.

The request is a description of what the user wants to achieve, and not what a particular

infrastructure has to do. This assumes a user model that we have built from a series of use cases.

Within this model, a program receives a list of input files and produces one or more output files.

Input files can be specified by filename, wildcards or catalog queries. Output files will be produced

in a scratch directory on the target machine and later retrieved by the system.

DISPATCHER
The dispatcher is responsible for creating scripts, filelists, class-ads and everything else the batch system requires and then submitting the

job. It is defined through an interface (abstract class), allowing different implementations. We currently provide two implementations:

LSFDispatcher - for each job creates a script and a file containing the input file list, assigns a scratch directory on the target machine for the

output files and runs the appropriate bsub command.

CondorGDispatcher - for each job creates a classAd and submits the job to the gatekeeper assigned by the policy. This is part of our GRID

implementation

LSF/CONDOR-G
Once the scheduler dispatches the jobs, the batch system will monitor the cluster and start the scripts. The final part of the

script is usually responsible for retrieving the job output files in case the batch system does not support this functionality.

We currently support LSF and Condor-G, since these are the systems we have currently deployed. The architecture allows to

integrate other systems as well.

Another big advantage of the scheduler is that the knowledge of how to use the underlying system correctly can be embedded

directly in the scheduler. The administrator can incorporate this knowledge into the policy and into the dispatcher, instead of

having to rely on an informed and correct usage. For example, we have integrated the use of LSF resources to avoid multiple jobs

accessing the same NFS server at the same time thus decreasing performance.

JOB INITIALIZER
Parses the XML and creates an internal representation of the job request. It also checks for consistency, by checking

whether the specified input files exist, or if the user selected two options that are mutually exclusive.

JOB SPLITTING
one request for 100s of jobs

Given a single user request, the scheduler divides the input file list

into multiple lists, one for every job submitted. In the request the

user can set the limit (min/max) of files assigned to a single job.

To allow job splitting, the user has to follow two simple rules:

! take the list of input files from the scheduler, to allow the

scheduler to decide on which input files to run on

! give different names to the output files, to avoid clash between

two different jobs.

STAR
GRID

Distributed Disk ModelDistributed Disk Model
Bringing the job to the dataBringing the job to the data

One of the main objective of the scheduler was to

enable the distributed disk model. The data

(MuDST) is spread over the local disks of the

different nodes of the cluster. The Scheduler

dispatches the job on the machine where the

data is stored.

This model will enable us to use those

computer resources that do not possess a

network file-system.

At present, the population is static: it is not

triggered by user requests, but

decided and fixed by the

administrator.

	Page 1
	Page 2
	Page 3
	posterLayer.pdf
	Page 1

