The STAR
Scheduler Project

A jol) submission tool

for distvibuied resource environmenis

Gabriele Carcassi, Jerome Lauret, Claude Pruneau

STAR Collaboration

CHEPO3, La]0//61, Ca/iforn-ia, USA

Alis tract

The STAR scheduler project was
developed to allow users to submit their
analysis jobs taking as input a logical
collection of files or aspecific list of files.
The files were initially foreseen as
residing on centralized storage or on the
various distributed disks of our analysis
farm, a pool of 154 Linux Pentium-based
processing nhodes with a total power
equivalent to 24,000 SI95 and 30 TB of
storage. As input, the UL uses an XML
approach with simple rules. The scheduler
analyzes the request taking advantage of
the information returned by a meta data
catalog and splits the job request into
different processes which are then
dispatched onour CPU resource pool.

Designed to be modular with a
class-based component layout
and written in Java, this tool is
being further extended to allow
submission of jobs on the GRID in
a completely transparent way to
the users.

This poster presents the
software architecture, the
status of this tool and an
overview of its future
development and its migration
toward our main resource broker
for job submission.

Keywords: Job scheduling,
resource broker,

request.xml JOB DE S CRIPTION

The user describes his job request by writingan XML file.
<job maxFilesPerProcess=" The request is a description of what the user wants to achieve, and not what a particular S er
zg%n;magg;rc}ﬁ:’;?;rﬂst infrastructure has to do. This assumes a user model that we have built from a series of use cases.
<input URL=”cataiog:star.b Within this model, a program receives a list of input files and produces one or more output files.

<output fromScratch="*.roo Input files can be specified by filename, wildcards or catalog queries. Output files will be produced

</job> inascratch directory on the target machine and later retrieved by the system. le ‘) el

OB INITIALIZER STAR
XN es an internal representation of the job request. It also checks for consistency, by checking -

whether the specifiedinput files exist, or if the user selected two options that are mutually exclusive. '

‘j!i::,". | cneauler

' Resource Brolzer

ORING

The policy is the core of resource
brokering: it decides how fo use
resources to satisfy requests. It
uses GRID middleware to gather
the information to make.a@ good
decision.

It is_an abstract class and the

imple y is chosen at
runtime, M to experiment
with diff A‘?Aémes.
Our two curfent main policies are:

PassivePolicy - solves all the queries
and forms'one list with'all the files
requested. This list is divided
according fo user requests and to

where the files are located. Each
sub-list is assigned to a different

The integration with the file catal
input as a query on the physics
allow the scheduler to choose
that are on less-used machines.
The query is opaque o the schedu
catalog through an interface (abstrac
different catalog implementations.
based on the STAR file catalog. '

ibutes (metada

es that are more

~and is passed to the file
allowing the use
implementation

make betfer deeisi @GR; level (aggregate site information)
and at asite level (machine bx;ﬁ\' achine information).

ITTING

JOB

Job.
p 1 0 OS][. Z?S It is called passive because it does
one reque or oJ Jjo not trigger datareplication. GRID I l °
] . hei e i SiteForwardPolicy - decides mP ementatlon
leen = duvues i iy randomly on which site the request : y
0T, he limit (min/ d :?que;f s should be dispatched, and prepares il pr‘oTF)Type splits thy schedul.mg g i
user cansg‘rf e.lm.n’r (min/max) o assigne 0d ngle jo a local scheduler execution to be process into two parts. The grid- ‘RCF Batch
To allow job splitting, the user has ow two simple rules: dispatched. level scheduling decides the site £ difes System
o take the list of input files from cheduler, to allow the It is part of our GRID and the site-level scheduling ' :

creates the actual jobs. ’

implementation.

e give different names to the output file
two different jobs.

avoid clash between \

Tob |ap |6RID| g [eorser-o o IPDSF

Scheduler Schedulgr

Batch

System

— e — — — — — — — — — — — S e S ——

’ DISPATCHER . -

/4

| e

| The dispatcher is responsible for creating scripts, filelists, class-ads and everything else the batch system requires and Th‘et@q&\??g the

| Job. It isdefined through aninterface (abstract class), allowing dif ferent implementations. We currently provide ;rf/vo implementations:

| LSFDispatcher - for each job creates ascript and a file containing the input file list, assigns ascratch directory on the target machinefor the

| output files and runs the appropriate bsub command. >

l CondorGDispatcher - for each job creates a classAd and submits the job to the gatekeeper assigned by the policy. This'is part of our GRID
\ implementation

.

| —

-
\

it & \ LS F/ CONDOR-G B atcll

Ee T
-1
i Once the scheduler dispatches the jobs, the batch system will monitor the cluster and start the scripts. The final part of the
f * script isusually responsible for retrieving the job output files in case the batch system does not support this functionality.
PPDG We currently support LSF and Condor-6, since these are the systems we have currently deployed. The architecture allows to t
integrate other systems aswell. Sys em
Another big advantage of the scheduler is that the knowledge of how to use the underlying system correctly can be embedded
nnKHM“EH directly in the scheduler. The administrator can incorporate this knowledge into the policy and into the dispatcher, instead of
NATIOMNAL LABORATORY having to rely on an informed and correct usage. For example, we have integrated the use of LSF resources to avoid multiple jobs

accessing the same NFS server at the same time thus decreasing performance.

Distributed Disk Model
Bringing the jol) to the data

One of the main objective of the scheduler was to
enable the distributed disk model. The data

(MuDST) is spread over the local disks of the // |
different nodes of the cluster. The Scheduler
2,

dispatches the job on the machine where the
datais stored. / y
This model will enable us to use those
computer resources that do not possess a
network file-system.

At present, the population is static: it is not
triggered by user requests, but

decided and fixed by the /-
administrator. . O

	Page 1
	Page 2
	Page 3
	posterLayer.pdf
	Page 1

