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The bremsstrahlung energy loss distribution of electrons propagating in matter is highly non Gaussian. Because
the Kalman filter relies solely on Gaussian probability density functions, it might not be an optimal reconstruc-
tion algorithm for electron tracks. A Gaussian-sum filter (GSF) algorithm for electron track reconstruction in
the CMS tracker has therefore been developed. The basic idea is to model the bremsstrahlung energy loss dis-
tribution by a Gaussian mixture rather than a single Gaussian. It is shown that the GSF is able to improve the
momentum resolution of electrons compared to the standard Kalman filter. The momentum resolution and the
quality of the estimated error are studied with various types of mixture models of the energy loss distribution.

1. Introduction

Modern track detectors based on semiconductor
technologies contain larger amounts of material than
gaseous detector types, partially due to the detector
elements themselves and partially due to additional
material required for on-sensor electronics, power,
cooling, and mechanical support. A precise mod-
elling of material effects in track reconstruction is
therefore necessary to obtain the best estimates of
the track parameters. Such material effects are par-
ticularly relevant for the reconstruction of electrons
which, in addition to ionization energy loss and multi-
ple Coulomb scattering, suffer from large energy losses
due to bremsstrahlung.

A well-known model of the bremsstrahlung energy
loss is due to Bethe and Heitler [1]. In this model,
the probability density function (PDF), f(z), of the
energy loss of an electron is
[~Inz]“!

: (1)

where ¢ = t/In2, t is the thickness of material tra-
versed by the electron (in units of radiation length),
and z is the fraction of energy remaining after the
material layer is traversed. The probability of a given
fractional energy loss is assumed to be independent
of the energy of the incoming particle. This PDF is
shown in Fig. 1 for different thickness values.

The baseline for track reconstruction in the CMS
tracker is the Kalman filter [2]. Throughout the filter
tracks are described by a five-dimensional state vec-
tor, containing the information about the momentum,
the direction and the position at some reference sur-
face. The material effects are currently assumed to
be concentrated in the active elements of the detector
layers. In this context the optimal treatment of ra-
diative energy loss is to correct the momentum with
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Figure 1: Probability density function f(z) for different
thickness values.

the mean value of energy loss and to increase the vari-
ance of the momentum by adding the variance of the
energy loss distribution. This procedure should en-
sure unbiased estimates of the track parameters and
of the associated uncertainties [3]. The Kalman filter
is a linear least-squares estimator, and is proved to be
optimal only when all probability densities encoun-
tered during the track reconstruction procedure are
Gaussian. The implicit assumption of approximating
the Bethe-Heitler distribution with a single Gaussian
is quite crude. It is therefore plausible that a non-
linear estimator which takes the actual shape of the
distribution into account can do better.

A non-linear generalization of the Kalman filter
(KF), the Gaussian-sum filter (GSF) [1, 5], has there-
fore been implemented in the reconstruction software
of the CMS tracker [6]. In the GSF the distributions of
all state vectors are Gaussian mixtures, i.e. weighted
sums of Gaussians instead of single Gaussians. The
algorithm is therefore appropriate if the probability
densities involved in track reconstruction can be ad-
equately described by Gaussian mixtures. The basic
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idea of the present work is to approximate the Bethe-
Heitler distribution as a Gaussian mixture rather than
a single Gaussian, in which the different components
of the mixture model different degrees of hardness of
the bremsstrahlung in the layer under consideration.
The resulting estimator resembles a set of Kalman
filters running in parallel, where each Kalman filter
corresponds to one of the components of the mixture
describing the distribution of the state vector.

2. Approximating the fractional energy
loss distribution

An important issue with the GSF reconstruction of
electrons is to obtain a good Gaussian-mixture ap-
proximation of the Bethe-Heitler distribution. The
parameters to be obtained are the weights, the mean
values and the variances of each of the components in
the approximating mixture. The parameters are de-
termined by minimizing the following two distances:

Dcpr = /oo |F(z) — G(%)] dz, (2)

— 00

Da = [ T )/ fdE ()

— 00

where f(z) and F(z) are the PDF and cumulative
distribution function (CDF) of the model distribution
and g(z) and G(z) are the PDF and CDF of the Gaus-
sian mixture, respectively. The distance Dy, is the
so-called Kullback-Leibler distance between the model
distribution and the mixture. Hereafter, the mix-
tures obtained by minimizing Dcpr are called CDF-
mixtures, whereas the mixtures obtained by minimiz-
ing Dyp, are called KL-mixtures. The minimizations
have been done independently on a set of discrete val-
ues of ¢, ranging from 0.02 to 0.20. Figures 2 and 3
show the resulting distances as a function of thickness
for a varying number of components in the approxi-
mating mixture. In order to obtain mixtures for arbi-
trary values of the thickness, fifth-degree polynomials
have been fitted to the parameters as a function of
t. Due to the fast access to the parameters from the
polynomials, the calculation of the mixture is done
on the fly during reconstruction, using the effective
thickness of a detector layer from the knowledge of
the incident angle of inclination.

3. Reducing the number of components

The approximation of energy loss by a Gaussian
mixture amounts to a convolution of this mixture with
the current state, which in general is also composed
of several Gaussian components. The strict applica-
tion of the GSF algorithm therefore quickly leads to a
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Figure 2: The distances Dk, and Dcpy as a function of
the thickness t, for CDF-mixtures, with different
numbers of components.
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Figure 3: The distances Dki, and Dcpr as a function of
the thickness ¢, for KL-mixtures, with different numbers
of components.

prohibitively large number of components due to the
combinatorics involved each time a layer of material
is traversed.

In a realistic implementation of the GSF the num-
ber of components must repeatedly be reduced to a
predefined maximum. As little information as possi-
ble should be lost in this procedure. Two strategies
have been tested:

1. Only the N components with the largest weights
are kept;

2. Components are merged into clusters, according
to a given metric.

The first option has the advantage of being compu-
tationally light, but it turns out to be inferior. Even
the first two moments of the estimated parameters are
not described correctly.

In the second approach, the component with the
largest weight is merged with the one closest to it,
and this procedure is repeated until the required num-
ber of components is reached. The results below have
been obtained by using the Kullback-Leibler distance
— defined in Equation (3) — as a measure of distance.
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4. Results from simulated tracks in the
CMS tracker

First, results from the reconstruction of data origi-
nating from a simplified simulation are shown. In this
simulation multiple scattering and ionization energy
loss are turned off, all the material is concentrated on
the detector units, and the exact amount of material
used in the simulation is known by the reconstruction
program. Single electron tracks with pr = 10 GeV/c
have been simulated for absolute values of 1 less than
1.0 . Reconstructed hits have been collected using
the knowledge of the associated simulated hits, so no
pattern recognition has been involved. The following
results all refer to the quantity ¢/p (charge over abso-
lute value of the momentum) recorded at the point of
closest approach to the vertex in the transverse plane
— the transverse impact point (TIP) — after a fit go-
ing from the outside towards the inside of the tracker.
Figure 4 shows an example of the estimated ¢/p for
one single track, both for the KF and for the GSF.
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Figure 4: Estimated ¢/p of one single track for the GSF
(solid), the KF (dashed) and the combined GSF state
(dotted). The combined GSF state refers to the first and
the second moments of the GSF estimate, here visualized
as a single Gaussian. The arrow denotes the true value of
q/p- It can be seen that the estimated PDF of the GSF
is a non-Gaussian function.

Figures 5 and 6 show probability distributions for
the estimated ¢/p of the KF and the GSF with a
varying maximum number of components kept dur-
ing the reconstruction. Given the estimated PDF (a
single Gaussian for the KF, a Gaussian mixture for
the GSF), each entry in the histogram amounts to
the integral from —oo to the true value of ¢/p. If
the estimated PDF is a correct description of the real
distribution of the parameter, the corresponding his-
togram should be flat.

The deviation from flatness can be quantified by the
x? of the difference between the probability distribu-
tions of ¢/p and the flat distribution. This x? per bin
is shown in Fig. 7 for a set of different mixtures as a
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Figure 5: Probability distribution for the estimated ¢/p
for the KF (solid) and the GSF with a maximum of six
(dashed-dotted), twelve (dashed), 18 (solid) and 36
(dotted) components kept during reconstruction. In this
case the same six-component CDF-mixture has been
used both in the simulation of the disturbance of the
momentum in a detector unit and in reconstruction.
Keeping 36 components yields estimates quite close to
the correct distribution of the parameter.
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Figure 6: Probability distribution for the estimated ¢q/p
for the KF (solid) and the GSF with a maximum of six
(dashed-dotted), twelve (dashed), 18 (solid) and 36
(dotted) components kept during reconstruction. The
same six-component mixture as the one described in the
caption of Fig. 5 has been used in reconstruction, but the
simulation of the disturbance of the momentum in a
detector unit has been done by sampling from the
Bethe-Heitler distribution. The distributions for the GSF
are seen to be less flat than those shown in Fig. 5.

function of the maximum number of components kept.
The CDF-mixtures are superior to the KL-mixtures
concerning the quality of the estimated ¢/p. The main
trend seems to be related to the maximum number of
components kept rather than the number of compo-
nents in the mixture describing the energy loss, even
though the mixtures with five and six components are
best in the limit of keeping a large number of compo-
nents.

Figure 8 shows the residuals of the estimated ¢/p of
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Figure 7: Values of x? per bin of the probability
distribution for CDF-mixtures with four (circles), five
(squares) and six (triangles pointing upwards)
components, as well as a KL-mixture with six (triangles
pointing downwards) components. The corresponding
value for the KF is 146.

the GSF and the KF with respect to the true value of
the parameter. The estimated ¢/p for the GSF is the
mean value of the state vector mixture, and the mix-
ture used for this specific plot is a CDF-mixture with
six components. In order to quantify the difference
between the GSF and the KF residuals, the full-width
at half-maximum (FWHM) and the half-width of in-
tervals covering 50% and 90% of the distribution have
been considered. The covering intervals have been
chosen to be symmetric about zero. The FWHM and
the half-widths of the covering intervals are shown in
Figs. 9, 10 and 11. The different flavours of the GSF
in these figures are the same as those described in the
caption of Fig. 7.
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Figure 8: Residuals of estimated ¢/p with respect to the
true value of the parameter for the GSF and the KF at
the transverse impact point. A maximum number of
twelve components has been kept during reconstruction.
Long tails extending outside the limits of the histogram
exist both for the KF and for the GSF. These tails are
due to hard radiation in the innermost layers of the
tracker.
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Figure 9: Full-width at half-maximum for the GSF as a
function of the maximum number of components kept
during reconstruction. The corresponding value of the
KF is 0.013.
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Figure 10: Half-widths of the symmetric intervals
covering 50% of the distribution for the GSF as a
function of the maximum number of components kept
during reconstruction. The corresponding value of the
KF is 0.0080.
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Figure 11: Half-widths of the symmetric intervals
covering 90% of the distribution for the GSF as a
function of the maximum number of components kept
during reconstruction. The corresponding value of the
KF is 0.0295.
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The GSF and the KF have also been run on tracks
from a full simulation using the official CMS simula-
tion program [7]. The pr and the 7 range are the
same as in the simplified simulation, but the amount
and spatial distribution of the material are different.
Probability distributions of the estimated ¢/p for the
GSF and the KF are shown in Fig. 12. The prob-
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Figure 12: Probability distribution for the estimated ¢/p
for the KF (dashed) and the GSF (solid). The specific
mixture used in the GSF is a CDF-mixture with six
components. A maximum number of twelve components
has been kept during reconstruction. The reconstruction
algorithms have been run on tracks from a full
simulation.

ability distribution of the GSF exhibits no large de-
viation from flatness, indicating that the estimated
PDF of q/p describes reasonably well the actual PDF
of ¢/p. This observation is all the more remarkable
since, with the full simulation, the energy loss is not
generated by the simple Bethe-Heitler model, and nei-
ther the exact amount nor the exact location of the
material are known to the GSF.

The corresponding residuals of the estimated ¢/p
with respect to the true value are shown in Figs. 13
and 14. The residuals shown in Fig. 14 have been
obtained by including a vertex constraint in the fit.
Such a constraint allows the momentum to be mea-
sured in the innermost part of the track and thus
gives a handle on possible radiation in the first two
layers. The result of including this constraint is a less
skew distribution with the mode being moved closer
towards zero, and the amount of tracks in the tails is
also reduced. Even though the results from the full
simulation qualitatively seem to confirm those from
the simplified simulation, more studies are needed to
understand the differences in detail.

5. Conclusion
The Gaussian-sum filter has been implemented in

the CMS reconstruction program. It has been vali-
dated with electron tracks with a simplified simulation
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Figure 13: Residuals of the estimated ¢/p with respect to
the true value at the transverse impact point for the KF
and the GSF. The reconstruction algorithms have been
run on tracks from a full simulation.
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Figure 14: Residuals of the estimated ¢/p with respect to
the true value at the transverse impact point for the KF
and the GSF. A vertex constraint has been included in
the fits. The reconstruction algorithms have been run on
tracks from a full simulation.

in which the energy loss distribution (Bethe-Heitler
model), the exact amount of material and its exact
location are known to the reconstruction program. It
has been shown that the quality of the momentum
estimate depends mainly on the number of mixture
components kept during reconstruction, and to some
extent also on the number of components in the mix-
ture approximation to the energy loss distribution.
A comparison with the best linear unbiased estima-
tor, the Kalman filter, shows a clear improvement of
the momentum resolution. Remarkably, a similar im-
provement can be seen with electron tracks from the
full simulation, although in this case neither the exact
energy loss distribution nor the precise amount and
location of material are known to the reconstruction
program. More systematic studies with electrons from
the full simulation are clearly needed, but it seems
safe to conclude that in electron reconstruction the
Gaussian-sum filter yields a substantial gain in preci-
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sion as compared to the Kalman filter.
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