
Twelve Ways to Build CMS Crossings from ROOT Files
D. Chamont and C. Charlot
LLR, IN2P3, CNRS, Ecole Polytechnique, France

The simulation of CMS raw data requires the random selection of one hundred and fifty pileup events from
a very large set of files, to be superimposed in memory to the signal event. The use of ROOT I/O for that
purpose is quite unusual: the events are not read sequentially but pseudo-randomly, they are not processed one
by one in memory but by bunches, and they do not contain orthodox ROOT objects but many foreign objects
and templates. In this context, we have compared the performance of ROOT containers versus the STL vectors,
and the use of trees versus a direct storage of containers. The strategy with best performances is by far the one
using clones within trees, but it stays hard to tune and very dependant on the exact use-case. The use of STL
vectors could bring more easily similar performances in a future ROOT release.

1. Introduction

The CMS experiment [1] is one of the two multipur-
pose experiments being under construction to operate
at the future Large Hadron Collider (LHC) at CERN.
A particularly important aspect of the CMS core soft-
ware is the database system that will be used to handle
the petabytes of data that the experiment will pro-
duce. The experiment has recently decided to move
away from its Objectivity based system in favor of an
hybrid solution based on ROOT I/O [2]. This paper
describes the work done in this context so to evalu-
ate the performances of using the very specific ROOT
classes (especially TTree and TClonesArray) for the
data storage. In the meantime, CMS also started a
more direct replacement of the existing Objectivity
implementation [3].

We did not choose to explore the many use-cases
of CMS, but rather focused on a single representative
one and studied the many ways to implement it with
ROOT I/O.

The selected use-case is the last step of the sim-
ulation chain [4]: starting from the events produced
by the detector simulation, we simulate the raw data
produced by the detector. Due to the high luminosity
of the LHC machine, this involves firstly the super-
imposition to the signal event of a number of pileup
events. The resulting crossing is then digitized, that is
the effect of the front end electronics is simulated so to
produced a digitised crossing or raw data. From the
applications currently developped by CMS, this step
is the most critical from the I/O point of view: for the
simulation of each raw data event of ∼ 2MBytes size,
one must load in memory about one hundred and fifty
minimum bias events of ∼ 300KBytes size. This re-
quires huge memory and is an intensive data reading
process. Moreover, this is an unusual use of ROOT
I/O on several aspects:

• The CMS code contains C++ templates, STL
containers and it uses external packages whose
classes cannot be instrumented for ROOT. The
ROOT support for templates, standard contain-

ers and external classes is quite new and still not
fully mature.

• The pileup events, stored in ROOT files, are not
read sequentially. Ideally, such events should
be taken from a large enough statistic, so to
produce uncorrelated sequences of pileup to be
added on each signal event. Since we have only
a finite statistic of pileup events, we chose to se-
lect them in a random fashion so to limit the
possible effect of correlation between different
sequences. Nevertheless, the selection method
is not fully random (real randomness would im-
ply a change of file for each new pileup event and
would have a strong impact on performances).

• The events are not processed one by one in mem-
ory, such as in standard analysis jobs as de-
scribed in the ROOT documentation. As ex-
plained before, we rather have at the same time
in memory all the hits from the signal and from
the many minimum bias events that we want to
pile up.

In this context, we have compared the performance
of four kinds of containers (section 2.2), combined
with three different ways (section 2.3) to store them
in ROOT files. This leads to the twelve strategies ad-
vertized in the title. Also worth to be mentionned,
we really focused on the huge event data to be trans-
fered: we did not store neither meta-data nor the links
or pointers between the elements of the events. Surely,
the latter should be integrated in a later version of the
testbed.

The section 2 gives a more detailed description of
the testbed, what we have tested and on which plat-
form. Then, the section 3 presents the most interest-
ing results.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1TUKT004 ePrint cs.DB/0306056

Figure 1: Main Use-Case

2. Testbed

2.1. Main Use-Case

The testbed is basically able to build crossings, as
described in figure 1. As input, we have a file of
five hundred signal events, and one hundred files of
five hundred minimum bias events (actually, for the
testbed, one hundred times the same original file). A
typical job is the production of five hundred cross-
ings. Building a crossing and digitizing it consists of
the following steps:

1. A persistency manager loads in memory the next
signal event from the signal file

2. Another persistent manager loads 153 mini-
mum bias events from the minimum bias files
(this number corresponds to the luminosity
of 1034cm−2s−1). These events are selected
pseudo-randomly: we take X consecutive events,
then we do a random jump between 0 and Y,
etc. X is called ”burst” and Y is called ”jump”.
Their typical values in CMS applications are 3
and 10. Also, when loading an event, we select
randomly which rank it will have in the collec-
tion in memory.

3. The digitizer collects all the hits from the sig-
nal and minimum bias events in memory, then
simulates the detector front end electronics and
produces the correspondant digis.

4. A third persistent manager takes the digis and
stores them as the next digitized crossing in the
digis output file.

The expected bottleneck and area of interest is the
loading of the minimum bias events. Below follows
the mean number of objects and their size for such
events:

• 351 instances of RtbGenParticle (whose raw
size is 46 bytes).

• 584 instances of RtbSimVertex (whose raw size
is 34 bytes).

• 169 instances of RtbSimTrack (whose raw size is
38 bytes).

• 3282 instances of RtbCaloHit (whose raw size is
20 bytes).

• 1871 instances of RtbTrackHit (whose raw size
ist 56 bytes).

This leads to an event size of 208 Kbytes, if we just
consider the pure data, without any adjunction for
the support of persistency. As one can see, the size is
mainly dominated by the detector simulated hits. We
also computed that the mean event size would be 392
Kbytes if each numerical attribute would be of type
double (this information will prove useful in section
2.3.2).

In the results section, we will especially study the
size of the minimum bias files, and the time necessary
to load 153 pseudo-random events from them.

2.2. Crossing Data Model

We chose to put all our persistent data in the shared
hierarchy of folders proposed by ROOT (tree of in-
stances of TFolder). This permits to decouple com-
pletely the persistency mechanism from the digitizing
code.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2TUKT004 ePrint cs.DB/0306056

The folder called //root/crossing/digis is the
output ”event” of the current crossing: it contains
a container of instances of RtbCaloDigis and a con-
tainer of instances of RtbTrackDigis.

The 153 folders which we have called
//root/crossing/minbias*, plus the single one
called //root/crossing/signal represent the input
events composing the current crossing. Each of
these folders contains a container for each kind of
input event objects: RtbTrackHit, RtbCaloHit,
RtbSimTrack, RtbSimVertex and RtbGenParticle.

Each time we run the testbed, we chose a given kind
of container which is used for all the input and out-
put data. All those containers inherit from a common
abstract class:

template <class T>
class RtbVTArray<T>
{
public:
// write interface
virtual void clear() =0 ;
virtual void add(const T &) =0 ;
// read interface
virtual UInt_t size() const =0 ;
virtual const T & operator[]
(UInt_t i) const =0 ;

} ;

This (simplified) class header shows that we rely
on size() and operator[] to read the objects of a
collection. On the other side, when creating a collec-
tion, we do not pre-allocate the size of the container
to be filled: in the CMS code we have imported in
the testbed, the size of the created collections is rarely
known in advance. This write interface is not the most
efficient, but it fits the user needs and what matters
most for this testbed is the read efficiency. Four kinds
of concrete containers have been implemented, which
are described below.

2.2.1. Standard STL vector

The class RtbStlArray<T> wraps a standard
std::vector<T>. The support of this kind of con-
tainer is quite recent within ROOT. The main benefit
of this container is that any kind of T can be collected
(it is not needed that T inherits from TObject). The
associated disadvantage is that ROOT does not apply
any of its optimizations when storing/retrieving the
objects, expecially its attribute-wise serialization.

2.2.2. Dynamic C Array

The class RtbCArray<T> contains a simple C array
dynamicaly allocated. Each time the array is full, the
size is multiplied by two and the array reallocated.

The objects which are collected in the C array must
be instrumented with ClassDef, otherwise ROOT
I/O will not be able to save them. Since we do not

want to impose that T is instrumented for ROOT,
we wrote a template class RtbClassDef<T>, which
inherits from T and is instrumented with ClassDef.
Each time we want to add an instance of T into
the C array, we first change its type from T to
RtbClassDef<T>. So to evaluate the eventual cost of
this process, we also kept the possibility to compile the
testbed with event data classes directly instrumented
with ClassDef (this is done by unsetting the macro
RTB FOREIGN).

The class RtbCArray<T> should not be seen as a
container to be used in a real application. It is rather
a toy container, just written for comparison and to
evaluate the performance of a good old simplistic C
array.

2.2.3. TObjArray

The class RtbObjArray<T> wraps a TObjArray.
As for any ROOT collection, we cannot add an ob-

ject to the TObjArray when its class does not inherit
from TObject. Again, we do not want to impose that
T is instrumented for ROOT, so we wrote a template
class RtbObj<T> which inherits both from TObject
and T. Each time we want to add an object into the
collection, we first transform it into an instance of
RtbObj<T>. So to evaluate the eventual cost of this
process, we also kept the possibility to compile the
testbed with top event data classes directly inherit-
ing from TObject (this is done by setting the macro
RTB TOBJECTS).

As for RtbCArray<T>, RtbObjArray<T> should not
be seen as a container usable in a real application. It
is here for comparison, and should have the worst per-
formances of all the containers, because it is handling
the objects by pointers (and not by value).

2.2.4. TClonesArray

The class RtbClonesArray<T> wraps a
TClonesArray. As for RtbObjArray<T>, the in-
stances of T must be transformed into instances of
RtbObj<T> before they are added to the collection.

The class RtbClonesArray<T> is the real alter-
native to RtbStlArray<T>. Since it is based on
TClonesArray, which is the official optimized con-
tainer of ROOT, it should show the best perfomance.
The counterpart is that it is harder to use and the
collected objects must be kind of TObject.

2.3. Persistency Managers

The task of a persistency manager is to transfer
an event from memory (a TFolder and its contents)
to disk (an entry in a TFile) and vice-versa. Three
flavors have been implemented, which are described
below.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3TUKT004 ePrint cs.DB/0306056

2.3.1. RtbPomKeys

This persistency manager implements the simplest
approach, which only uses the base ROOT I/O level
and the class TKeys: one directly writes the TFolder
to the TFile, each time with a different meaningful
name: the name of the original folder plus an incre-
menting rank.

For example, in our main use-case, the output of
the first digitized crossing will be saved as digis0,
the second one as digis1, etc.

2.3.2. RtbPomTreeMatrix

The central idea of the second manager is to avoid
the use of ROOT instrumentation and dictionaries:
this is achieved by transfering the data of each con-
tainer into an instance of TMatrixD and storing the
matrix instead of the container. More precisely, each
row of the matrix is the copy of one object from the
original container, and each column corresponds to a
given attribute of the class of the objects.

In this manager, we also chose to use a TTree. Each
entry of the tree is an event. Each branch is dedicated
to one kind of event objects, and attached to the cor-
responding matrix.

In this approach, we do not take profit of the ROOT
persistency features, such as the generated streamers,
and we must write by ourselves the code which trans-
fers the data between the containers and the matrices
(for each persistent class). Also, since any number
is transformed into a Double t, we expect files to be
twice bigger than their normal size.

On the other hand, we do not suffer from the ROOT
parser limitations and bugs. We are quite confident
here in the data retrieved from the files, and this man-
ager is primarily used in the testbed so to check that
the others managers are also correctly retrieving the
data.

2.3.3. RtbPomTreeDirect

This third kind of manager is the ROOT recom-
mended approach. Each file contains a single TTree
whose entries are the events. Similarly to the previous
manager, there is one top level branch for each kind
of event object, but this branch is directly attached to
the corresponding container in memory.

The level of split is a parameter of the testbed, but
we generally use the recommended default of 99. Con-
cerning the size of buffers, we rather tend to reduce
them to 8000 KBytes (empirical best value).

2.3.4. Main Use-Case

Once a persistent manager is built, and before writ-
ing or reading an event from a file, one must connect
the manager to a given folder in memory and to a
given file.

As one can see in the main use-case (see figure 1),
there is a manager for the signal events, and another
one for the digis, because they are always connected
to the same files and folders.

With regards to the minimum bias events, we were
not able to build a manager for each of the 153 events
in memory (each manager has some internal buffers
and this would require a large amount of memory
space). Thus, we use a single manager, which must
be reconnected to a new memory folder and eventually
to a new file after reading each event. This connex-
ion time is also something we have closely looked at
during the analysis of the results.

2.4. Implementation issues

Provided one uses the option -p of rootcint,
ROOT has very greatly improved its support of for-
eign classes, templates and std containers. It is now
also possible to enforce the respect of ANSI C++
when compiling. However, there are still some issues
with the use of ROOT that we discuss below.

2.4.1. Documentation

We really lack a central place where would be doc-
umented which subset of C++ is supported in the in-
terpreter, which subset can be made persistent, which
one can be used within a TTree, and which one can
be used with a TClonesArray within a TTree. Since
the ROOT team consider as a bug whatever is not
supported, they try to fix any such case rather than
report it. As a result, each user must rediscover by
himself the unsupported cases, when they do not do
invisible damage.

2.4.2. LinkDef

It has proved painful to write the configuration files
for the generation of dictionaries. One must explicit
all the classes which must be parsed, and in the right
order. Even with only seven top classes to be made
persistent, we felt the need to write a perl script for
the generation of the LinkDef file. A key cause is that
when one parses a given class, one must have parsed
before all the classes of all the attributes, including
each instanciated template. We wonder if one could
not find a way to automatize this within rootcint.

2.4.3. Tuning of TChain branches

Since we handle a very large number of minimum
bias files with the same internal tree, it was rather
logical to use an instance of TChain. Actually, the
fact that TChain inherits from TTree is misleading.
In particular, if you get the branches and customize
them, all your changes will disappear when the chain
move internally to a new file. Thus, you must detect
yourself any change of file and do again the branch

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4TUKT004 ePrint cs.DB/0306056

customizations. In our use-case of random events and
detailed branch tuning, TChain has finally not proved
helpful.

2.4.4. TBranch attachment

When one attaches a branch to a given variable,
it does not give the address of a variable, but the
adress of a pointer to a variable. This will let any
C++ programmer think that he can change later the
pointer value, so to fill another variable. This is not
true! We cannot imagine any technical reason for this,
but if such an obstacle exists, the signature of the
attachment method should be changed for the address
of a variable.

2.4.5. TClonesArray

This class has really turned out to be hard to un-
derstand , with a least six size-like methods. We can
understand that this comes from backward compati-
bility constraints, but still it is a problem as this class
is the central piece of the persistency service. Our
proposal to have a new ROOT collection class for the
persistency (without gaps !) has not been supported
by the ROOT team. Actually, much work is currently
done for the efficient support of std::vector<T>, and
we guess that this class could become what we would
like to see.

2.5. Parameters of the Testbed

A few options can be set before compiling, thanks
to macros in the central header file. They have been
kept as compilation option because it was hard to
make them runtime options, and not necessarily use-
ful. Here they are:

• RTB FOREIGN: if set (the default), the persis-
tent classes are not instrumented with the macro
ClassDef, and they will be considered as foreign
classes by ROOT.

• RTB TOBJECTS: if set (not the default), the
top persistent classes inherit from TObject and
are instrumented with ClassDef (whatever the
value of RTB FOREIGN). If not set, it implies
the use of the RtbObj<T> when appending the
objects to ROOT containers and the use of
RtbClassDef<T> when putting them into a dy-
namic C array.

• RTB RESET: if set (not the default), the empty
constructors of the persistent classes set all their
attributes to 0 (we were expecting an eventual
impact on the compression performance).

At runtime, one must choose within four kinds of
containers and three kinds of persistent managers.
This leads to twelves base strategies. All the testbed

Table I
Stl C Obj Clones

Keys
Matrix
Tree

results will be displayed as an array of twelve cells
corresponding to these strategies (see Table I).

In the table, the third column is just there to see
how bad is TObjArray, the second column is just there
to see the beavior of a good old dynamic C array, and
the second line is mainly a way to counter-check the
validity of the retrieved data. So, what matters most
are the corners of the array, especially the top left cor-
ner (Keys/Stl) which is the strategy used by CMS for
the direct replacement of its Objectivity implementa-
tion, and the bottom right corner (Tree/Clones) which
is the solution advertized by ROOT team and evalu-
ated in this work.

On top of the twelve strategies mentionned above,
we have additional parameters, whose value can affect
the performances of these strategies differently:

• Compression level: it should slow down the writ-
ing of objects, also slightly the reading, and re-
duce the size of files. A value of 1 is expected to
be the best compromise.

• Split level: TTree and ROOT containers use
some sort of attribute-wise storage mechanism.
The split level is the depth of the decomposition.

• Size of tree buffers: amount of data which is read
in one bunch from the file, for a given branch.

• Randomness: as described in the main use-case
(see section 2.1), the burst and jump can be
changed so to be close to a sequential use of
minimum bias events, or on the contrary close
to a really random access pattern.

• Size of containers: this parameter permits to
reduce the size of events by a given factor, so
to measure the effect of this size on the perfor-
mance. The default is 1 (takes all the data).
If the value is 10, when the input files are pre-
pared, only 1 from 10 elements is taken.

• Number of crossings: the use-case specifies that
each job must build 500 crossings. This number
can be lowered to see if the mean performance
is the same or to shorten the execution.

2.6. Platform used for the tests

All the results which are given below have been ob-
tained with a PC where the testbed was the only ap-

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5TUKT004 ePrint cs.DB/0306056

Table II Best Results
File size (Kb/event) Stl C Obj Clones

Cpu time (s/crossing)
Keys 152 175 155 155

3.16 4.82 9.65 4.43
Matrix 149 149 149 149

2.44 2.85 3.15 2.72
Tree 153 176 156 54

2.63 4.05 7.27 1.87

plication running. Its characteristics and software en-
vironment are the following:

• Processor: Pentium 4, 1.8 GHz.

• Memory: about 512 Mbytes.

• Disk: IDE.

• System: RedHat Linux 7.3 .

• Compiler: gcc 3.2 .

• Root release: 3.05/03 .

3. Results

We can hardly give here all the results we have ob-
tained when tuning the parameters of the testbed. We
will rather start with the best performance we have
obtained, then show and comment the effect of chang-
ing the value of some relevant parameters.

3.1. Best Results

In Table II, you will find the size of the minimum
bias files (divided by the numbers of events, i.e. 500)
and the mean time to read all the events of a crossing
(153 minimum bias event plus a signal event). We
made the 500 crossings and used all the input data.
We also used the default compression level (1) which
appeared to be always the best compromise.

As one can expect, TObjArray is always the worst
choice for the read performance.

Also expected, all the strategies with matrices give
files of the same size. The read time differs from one
container to the other, because of the final read step
where the data is taken from the matrices and trans-
formed into new objects added to the containers. It
can be seen as a measurement of the efficiency of the
container add() method.

Let’s now compare std::vector versus
TClonesArray. Within a TTree, TClonesArray
is by far the fastest, and the files are incredibly
smaller. The key reason here is the split mechanism:

Table III Remove compression

File size (Kb/event) Stl C Obj Clones
Cpu time (s/crossing)

Keys 341 568 427 384
1.76 3.00 8.27 2.95

Matrix 400 400 400 400
1.01 1.45 1.71 1.23

Tree 343 570 429 214
1.53 2.70 6.17 1.16

each attribute of each persistent class is given its own
branch and buffers (some sort of ”attribute-wise”
storage). This, combined with the compression of
data, proves very efficient. We do not have such per-
formance with std::vector<> because ROOT does
not support yet the splitting in such a case (yet one
can notice a small improvement when the instances
of std::vector<> are stored in a TTree rather than
directly in the file). It seems that a maximum split
is always worth, even when one reads back all the
branches from the tree. With regards to the size
of buffers, it appeared very complex to predict the
best value, depending on the split level, the type of
object attributes and the value of burst: it is useless
to read much in advance, if there is a random event
jump coming. We proceeded empirically and finished
with a size of 8000 KBytes, largely smaller than the
ROOT default.

The storage of TClonesArray directly in TFile (top
right cell, Keys/Clones) exhibits a rather poor perfor-
mance. The reason is surely because we had to switch
off the ByPassStreamer option, apparently buggy in
such a context. As a result, std:vector<> is the
quickest alternative when not using a tree.

3.2. Remove compression

When switching off the default compression of the
data (table III), one can measure how much it is ef-
ficient for the size of file! Without compression, the
read time is globally smaller, without changing the
classification of the corners.

Surprisingly enough, the strategy Matrix/Stl is re-
ally fast, and one can wonder what it would be if its
implementation was improved. Also a surprise, but
a bad one, only the Tree/Clones and the Matrix/*
strategies have file sizes which match the predictions
(see section 2.1). Other strategies have files largely
too big, and we did not fully investigate why.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6TUKT004 ePrint cs.DB/0306056

Table IV Increase randomness
File size (Kb/event) Stl C Obj Clones

Cpu time (s/crossing)
Keys 341 568 427 384

2.20 3.42 8.63 3.40
Matrix 400 400 400 400

1.31 1.78 2.03 1.59
Tree 343 570 429 214

2.45 3.71 6.98 2.71

Table V Reduce data size by 10

File size (Kb/event) Stl C Obj Clones
Cpu time (s/crossing)

Keys 34.9 54.2 43.6 39.5
0.82 0.96 1.51 1.05

Matrix 40.6 40.6 40.6 40.6
0.48 0.51 0.59 0.52

Tree 35.4 55.0 44.2 22.7
1.09 1.40 1.59 1.36

3.3. Then increase randomness and
reduce data volume

Our next step has been to reduce the parameter
burst to 1 and to increase jump to 1000, i.e. to take
the minimum bias events almost fully randomly.

In table IV, one can see that increased randomness
reduces more the performance of the */Clones strate-
gies than the */Stl, and reduces more the performance
of Tree/* than Keys/*. This makes Keys/Stl clearly
the best choice.

On top of that, if we reduce by a factor of ten the
number of elements we have in the events (table V),
the effect on the specialized ROOT classes is even
worse: the strategy Tree/Clones becomes the worst
strategy (apart from Tree/C and */ObjArray) !

The lesson is quite clear: in our specific CMS use-
case, the use of TTree and TClonesArray is by far
the most efficient strategy, but this cannot be gener-
alized. It highly depends on the volume of data and
the amount of randomness.

3.4. Other Results

Resetting the attributes to 0 in the empty construc-
tors of the event data does not appear to help com-
pression. So after trying it, we went back to an imple-
mentation where the empty contructors let undefined
values in the attributes.

Unsetting RTB FOREIGN or setting RTB TOBJECTS
has not greatly improved the performance of the
ROOT collections, so we turned back to the use of our
templated wrappers RtbClassDef<T> and RtbObj<T>.

For what concerns the write cpu time of the differ-
ent strategies, the twelve strategies compares almost
similarly: only the Tree/* strategies are found slightly
slower.

At last, we must confess we did not systematically
build the whole set of 500 crossings that is specified
by the use-case. When we did, we always noticed that
the overall performance was slightly better.

4. Conclusion

We have succeeded to read pseudo-random entries
from a TChain and to dispatch them to a few hun-
dred TFolders (despite the fact thar the tuning of the
TChain branches has not been straightforward). Sup-
port for foreign classes, templates and C++ standard
library has greatly improved in the recent releases of
ROOT.

The magic couple TTree/TClonesArray has proved
very efficient for our use-case, yet it requires top level
TObjects and the benefits can become losses with
smaller data volume or random access pattern. One
can simply use STL vectors and store them directly
into root files. Their integration in a TTree is not yet
as good as a TClonesArray, but this could change in
a future release of ROOT.

If this testbed were to be improved, one major step
would be to add real pointers or TRefs between the
objects (instead of the current indexes) and measure
the impact on performance.

You can obtain the testbed source code (for linux
with gmake and gcc) by contacting the authors.

Acknowledgments

We would like to thank the ROOT team who has
always quickly answered to any of our question or bug
report, and for the discussion we had concerning our
results.

We are also grateful to Pascal Paganini for his con-
tribution to the implementation of the CMS use-case
in the testbed.

References

[1] ”CMS Technical Proposal”, CERN/LHCC 94-38,
LHCC/P1, Dec 15, 1994.

[2] http://root.cern.ch/ .
[3] B. Tanenbaum, ”Implementation of Persistency in

the CMS Framework”, CHEP, San Diego, 2003.
[4] ”The Spring 2002 DAQ TDR Production”, CMS

NOTE-2002/034.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7TUKT004 ePrint cs.DB/0306056

