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1. Introduction 
 

At Fermilab we have two SciDAC (Scientific 
Discovery through Advanced Computing) funded linux 
clusters, a 48-node and 128-node Xeon cluster1 and an 
80-node Pentium III cluster. We have minimal manpower 
available for administrating these clusters. We anticipate 
growth in our cluster facility to order 1000 nodes over 
the next few years. We have written tools and developed 
techniques that enable us to remotely administrate and 
automate repeated tasks to monitor these clusters and 
keep them in production. These are divided into 3 
sections. 

1. Hardware management tasks such as remotely 
powering on, powering off and power cycling a 
node or a group of nodes.  

2. Operating system installation and upgrades, 
involving a large set of nodes, over Ethernet. 
This also includes reloading the BIOS or 
firmware on a set of nodes. 

3. A set of tools that manipulate OpenPBS 
(Portable Batch System) [1] command outputs, 
allowing integration with our own parallel 
command processing and file copying tools. 

This paper discusses how we integrate all these tools 
and techniques together to administrate and monitor the 
clusters to keep them in production. Henceforth in the 
paper we will refer to the server as the head node and the 
clients as the worker nodes. 
  
2. Remote node management 
 

Each of the worker nodes is installed with a BMC 
(Baseboard Management Controller). The BMC manages 
the interface between system management software and 
the platform management hardware, provides 
autonomous monitoring, event logging, and recovery 
control.  

IPMI (Intelligent Platform Management Interface)  
[2] uses a message-based protocol for the different 
interfaces to the platform management subsystem such as 
serial/modem, LAN, PCI Management Bus, and the 
system software-side “System Interface”  to the BMC.  

The key characteristic of IPMI is that inventory, 
monitoring, logging and recovery is available 
independent of the main processors, BIOS and operating  

                                                  
1 http://lqcd.fnal.gov 

 
system. IPMI provides a standard protocol, which allows 
the user to format data packets with defined headers and 
payload to communicate with various data sensor 
repositories in the BMC on the motherboard via a 
network interface, serial link, or internal I/O port. 
Platform management functions are also available when 
the operating system is not running, or when the 
computer is in a powered-down state. 

We have serial links connecting each worker node to 
a serial mutiplexer switch, which in turn connects via a 
SCSI type cable to a PCI card on the console server. This 
can be visualized as having the console server connected 
via a serial link to 48 or 128 nodes at one time. This 
allows us to redirect BIOS/console output from each 
worker node onto the console server and also allows us to 
power on, power off or power cycle a single node or a 
group of worker nodes. We support both IPMI versions 
0.9 and 1.5. The only significant difference in these two 
versions with respect to our software is in the layout of 
the sensor data structures. 

We also use the GUI-based cluster management 
application IPMIView, a SuperMicro product written in 
Java, which allows us to communicate with the BMC 
over Ethernet. It allows us to power on, power off and 
power cycle a single worker node and check on health 
(CPU temperature, fan speed, voltages etc.). The 
software has console redirection along with other remote 
node management options. We also have written a 
command-line utility with functions similar to IPMIView, 
which allows us to communicate with the BMC on a 
worker node via LAN.  This is useful for scripting, for 
example, when the same command needs to be executed 
on more than one node, a feature lacking in the GUI-
based software. 
 
3. Network boot 
 

PXE (Pre-eXecution boot Environment) code uses 
DHCP or BOOTP, in cooperation with a network server, 
to dynamically generate an IP address for the client node. 
This enables the PC to establish an IP connection with 
the server before the local operating system loads. 

When PXE starts running, it looks for a BOOTP 
server. It is provided by the BOOTP server with various 
information, such as IP address, the DNS name server, 
the file server from which it should request a boot file, 
and the path to that file. Once the client receives the 
required information it loads the bootloader pxelinux for 
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an OS install, or pxegrub for a BIOS or firmware install 
or upgrade. We have modified pxegrub so that it can load 
a DOS image. The bootloader loads either a linux kernel 
image and a linux ram disk, or a DOS image prepared 
with the mknbi utility [3]. 

The bootloader is the program which first gets 
control of the machine from PXE. It first initializes and 
manages the raw hardware. Its primary job is to copy the 
operating system into host memory and pass control to 
the operating system. The bootloader performs any 
necessary platform specific hardware configuration for 
the operating system. 

The initial ram disk provides the capability to load a 
Linux file system during the boot process. This ram disk 
can then be mounted as the root file system and programs 
can be run from it. Afterwards, a new root file system 
can be mounted from a different device. The previous 
root (from the initial ram disk) is then moved to a 
directory and can be subsequently un-mounted. The 
contents of the initial ram disk are designed to allow 
system startup to occur in two phases, where the kernel 
comes up with a minimum set of compiled-in drivers, 
and where additional modules are loaded from the new 
root file system. 

For an operating system install (Linux) the following 
steps are executed once the kernel and ramdisk have been 
loaded: 
• via init/rc.d, bring in an install script, which 

o partitions the disk. 
o makes a file system. 
o rcp’s tar files for the file system. 
o unpacks the tar files. 
o does host IP configuration. 
o rsh’s to the BOOTP server to comment 

itself out of the /etc/bootptab file. 
o reboots. 

For a BIOS or firmware install or upgrade the 
following steps are executed once DOS and the ramdisk 
have been loaded: 
• autoexec.bat executes, which then 

o does the firmware/BIOS upgrade/install. 
o using BOOTP discovers the host IP. 
o ftp’s stdout/stderr  to bootp server. 
o rsh’s to bootp server to comment itself out 

of the /etc/bootptab file. 
o reboots. 

 
 
 

The above procedure can be executed in parallel for 
more than one worker node. Since the procedure involves 
a single head node (bootp server) serving all the worker 
nodes, it involves a single point of failure. To avoid such 
a failure we execute the procedure on a fixed number of 
worker nodes, chosen depending on the network transfer 
rate and the maximum load bearing capacity of the bootp 
server. The above procedure does not scale well to 
hundreds of worker nodes so a multicast version is under 
development. 

 
4. Fermi Tools 
 

In this section we will talk about three primary tools 
which we use either standalone or in conjunction with 
each other. They are rgang, fermistat and fermitrack. 

Nearly every system administrator tasked with 
operating a cluster of Unix machines will eventually find 
or write a tool, which will execute the same command on 
all of the nodes. At Fermilab we call this tool rgang. On 
each node rgang executes the given command via rsh or 
ssh, displaying the result delimited by a node-specific 
header. The original rgang at FermiLab was 
implemented in Bourne shell. 

Because the original rgang executed the commands 
on the specified nodes serially, execution time was 
proportional to the number of nodes. We have 
implemented, in Python, a parallel version of rgang. This 
version forks separate rsh/ssh children, which execute in 
parallel. After successfully waiting on returns from each 
child or after timing out, this version of rgang displays 
the node responses in identical fashion to the original 
shell version of rgang. In addition, the latest rgang 
returns the OR of all of the exit status values of the 
commands executed on each of the nodes.  

Simple commands execute via this rgang on all 80 
nodes of one of our clusters in about 3 seconds. To allow 
scaling to kiloclusters, the new rgang can optionally 
utilize a tree-structure, via an "nway" switch. When so 
invoked, rgang uses rsh/ssh to spawn copies of itself on 
multiple nodes.  These copies in turn spawn additional 
copies. A few examples below explain this in more 
detail. 
 
 
 
 
 
 
 
 
 
 
 
Example 1. nway = 0 (default) 
 

In example 1 with an nway option of 0 or 
default, the rgang command forks off rsh or ssh 
commands in parallel from the start node onto all the 
worker nodes. 

   wnode1 
     
    wnode2 
     
start node   wnode3 
     
    wnode4 
    
    wnode5 
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Example 2. nway = 2 
 

In example 2 with an nway option of 2, the 
rgang command uses rsh/ssh to spawn copies of itself 
onto multiple nodes.  These copies in turn spawn 
additional copies. 

What motivated us to write fermistat was the 
desire for an interface that would integrate tools from 
OpenPBS with rgang. In the PBS execution environment 
a worker node is in one of the following states at any 
time: free, down, offline, reserved, job-exclusive or job-
sharing. PBS provides commands that allow a system 
administrator to set a worker node free or offline 
depending on the state of the node. Fermistat works in 
conjunction with the PBS tools, taking a list of worker 
nodes as generated by rgang and executing the PBS 
command in series to set the appropriate state of the 
worker node. 

For example, should the worker nodes wnode21, 
wnode22, wnode23 and wnode24 have a hardware 
problem and need to be placed offline for further 
investigation, we could execute the following commands 
in the PBS environment: 

 
[me]$> pbsnodes –o wnode21 
[me]$> pbsnodes –o wnode22 
[me]$> pbsnodes –o wnode23 
[me]$> pbsnodes –o wnode24 

 
With fermistat we can affect the same result in a 

single command as follows. 
 

[me]$> fermistat –o wnode2{ 1-4}  
 

The pattern wnode2{ 1-4}  is passed to rgang, 
which expands the pattern to a list of worker nodes as 
wnode21, wnode22, wnode23 and wnode24. fermistat 
executes the pbsnodes command in series for each 
worker node in the expanded list. Scaling to hundreds of 
nodes is not very efficient as the above commands are 
executed in series. A parallel version of fermistat is under 
development. rgang can be used to generate node lists 
from more complex patterns than shown in the example 
above. 

 
 
 

Consider a 4-node parallel job 12xy.myjob 
executing on the nodes wnode33, wnode53, wnode61 
and wnode84. The fermistat “ -l”  option allows the user to  
list the nodes belonging to a PBS job as follows: 
 

[me]$> fermistat –l 12xy.myjob 
 wnode33 
 wnode53 
 wnode61  
 wnode84 

 
This output can be piped to rgang to execute the 

desired command as follows: 
 
[me]$> fermistat –l 12xy.myjob | rgang - <command> 
 

The list of nodes generated by fermistat can be 
piped to another invocation of fermistat to put the nodes 
offline as follows: 
 

[me]$> fermistat –l 12xy.myjob | fermistat -o - 
 pbsnodes –o wnode33 
 pbsnodes –o wnode53 
 pbsnodes –o wnode61 
 pbsnodes –o wnode84 

 
Fermitrack is a primitive accounting system, used in 

conjunction with the OpenPBS accounting system. 
OpenPBS appends accounting information such as 
resource usage (wall time, cputime, node usage, and so 
forth) into an accounting file. The command to submit a 
pbs job (qsub), patched with code from Argonne 
National Lab [4], checks a flat project file for either the 
default project associated with the current user, or for a 
valid project specified by the user. If neither succeeds the 
job is rejected. fermitrack reads accounting information 
each night from the OpenPBS accounting file and charge 
projects for cluster usage.  If a particular project exceeds 
its limit, fermitrack removes it from the project file, thus 
automatically ensuring that a future qsub will reject that 
project when a job is submitted under that project name. 
fermitrack also keeps an account of cluster usage per 
project for later investigation and charge-back. 
 
5. Integration of tools for health and status 

monitoring 
 

Monitoring, logging and health data are transferred 
at regular intervals to the head nodes of our clusters. The 
worker nodes collect health data (CPU temperature, fan 
speed, voltages etc) from the sensor data repository 
maintained by the BMC using our IPMI software and 
send this information to the head node via the syslog udp 
socket. 

At regular intervals, the head node issues a series of 
commands via rgang to check on resource usage on each 
worker node, such as disk space and client services (such 
as the OpenPBS client process). The head node checks 
whether the resource usage and health data for each 

      wnode1 
       wnode2 

      wnode3 
start node     

 wnode4 
       wnode5 
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worker are within safe limits. If not, alarms are generated 
in the form of an email and a blinking node name on the 
web monitoring pages.  

A perl script that produces a graphical representation 
displaying the monitoring data in an easy to comprehend 
format for both the system administrator and user 
generates the web monitoring pages. The status of each 
node is displayed in a color-coded format. Nodes that 
have health or resource problems are highlighted in red 
to attract attention.  

The head node also executes fermitrack, our 
software accounting extension to OpenPBS, at regular 
intervals to check on project resource usage. In case of 
project violations, when all assigned time is used up by a 
particular project, an email is sent to notify the system 
administrators to take appropriate action. 
 
6. Conclusion 
 

The tools and techniques that we have coded and 
developed at Fermilab for our SciDAC Lattice QCD 
clusters provide us flexibility and hardware independence 
for monitoring and debugging. They allow us to add or 
remove extensions to current available open source 
monitoring software, to integrate our own tools with 
current open source software, and to develop more 
scalable monitoring software to meet our growing 
demands. 

The primary limitations to our current 
monitoring tools are single points of failure and 
scalability. As we add faster nodes and computer 
networks to our current setup, we expect execution times 
to reduce, thus allowing some scaling to larger numbers 
of workers. Another solution is to develop multicast 
versions of our tools. Still another is to have more than 
one monitoring node collecting health and resource usage 
data for groups of nodes, thus eliminating the single point 
of failure.  

As we scale to many hundreds of nodes in our 
clusters, monitoring and administration require more 
manpower, attention and capacity.  This growth will 
continue to drive development of new tools and 
techniques. 
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