

Tools and Techniques for Managing Clusters for SciDAC Lattice QCD at
Fermilab

A. Singh, D. Holmgren, R. Rechenmacher, S. Epsteyn
Fermi National Accelerator Laboratory,
Batavia, IL 60510, USA

1. Introduction

At Fermilab we have two SciDAC (Scientific
Discovery through Advanced Computing) funded linux
clusters, a 48-node and 128-node Xeon cluster1 and an
80-node Pentium III cluster. We have minimal manpower
available for administrating these clusters. We anticipate
growth in our cluster facility to order 1000 nodes over
the next few years. We have written tools and developed
techniques that enable us to remotely administrate and
automate repeated tasks to monitor these clusters and
keep them in production. These are divided into 3
sections.

1. Hardware management tasks such as remotely
powering on, powering off and power cycling a
node or a group of nodes.

2. Operating system installation and upgrades,
involving a large set of nodes, over Ethernet.
This also includes reloading the BIOS or
firmware on a set of nodes.

3. A set of tools that manipulate OpenPBS
(Portable Batch System) [1] command outputs,
allowing integration with our own parallel
command processing and file copying tools.

This paper discusses how we integrate all these tools
and techniques together to administrate and monitor the
clusters to keep them in production. Henceforth in the
paper we will refer to the server as the head node and the
clients as the worker nodes.

2. Remote node management

Each of the worker nodes is installed with a BMC
(Baseboard Management Controller). The BMC manages
the interface between system management software and
the platform management hardware, provides
autonomous monitoring, event logging, and recovery
control.

IPMI (Intelligent Platform Management Interface)
[2] uses a message-based protocol for the different
interfaces to the platform management subsystem such as
serial/modem, LAN, PCI Management Bus, and the
system software-side “System Interface” to the BMC.

The key characteristic of IPMI is that inventory,
monitoring, logging and recovery is available
independent of the main processors, BIOS and operating

1 http://lqcd.fnal.gov

system. IPMI provides a standard protocol, which allows
the user to format data packets with defined headers and
payload to communicate with various data sensor
repositories in the BMC on the motherboard via a
network interface, serial link, or internal I/O port.
Platform management functions are also available when
the operating system is not running, or when the
computer is in a powered-down state.

We have serial links connecting each worker node to
a serial mutiplexer switch, which in turn connects via a
SCSI type cable to a PCI card on the console server. This
can be visualized as having the console server connected
via a serial link to 48 or 128 nodes at one time. This
allows us to redirect BIOS/console output from each
worker node onto the console server and also allows us to
power on, power off or power cycle a single node or a
group of worker nodes. We support both IPMI versions
0.9 and 1.5. The only significant difference in these two
versions with respect to our software is in the layout of
the sensor data structures.

We also use the GUI-based cluster management
application IPMIView, a SuperMicro product written in
Java, which allows us to communicate with the BMC
over Ethernet. It allows us to power on, power off and
power cycle a single worker node and check on health
(CPU temperature, fan speed, voltages etc.). The
software has console redirection along with other remote
node management options. We also have written a
command-line utility with functions similar to IPMIView,
which allows us to communicate with the BMC on a
worker node via LAN. This is useful for scripting, for
example, when the same command needs to be executed
on more than one node, a feature lacking in the GUI-
based software.

3. Network boot

PXE (Pre-eXecution boot Environment) code uses
DHCP or BOOTP, in cooperation with a network server,
to dynamically generate an IP address for the client node.
This enables the PC to establish an IP connection with
the server before the local operating system loads.

When PXE starts running, it looks for a BOOTP
server. It is provided by the BOOTP server with various
information, such as IP address, the DNS name server,
the file server from which it should request a boot file,
and the path to that file. Once the client receives the
required information it loads the bootloader pxelinux for

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint cs.DC/0307021TUIT005

an OS install, or pxegrub for a BIOS or firmware install
or upgrade. We have modified pxegrub so that it can load
a DOS image. The bootloader loads either a linux kernel
image and a linux ram disk, or a DOS image prepared
with the mknbi utility [3].

The bootloader is the program which first gets
control of the machine from PXE. It first initializes and
manages the raw hardware. Its primary job is to copy the
operating system into host memory and pass control to
the operating system. The bootloader performs any
necessary platform specific hardware configuration for
the operating system.

The initial ram disk provides the capability to load a
Linux file system during the boot process. This ram disk
can then be mounted as the root file system and programs
can be run from it. Afterwards, a new root file system
can be mounted from a different device. The previous
root (from the initial ram disk) is then moved to a
directory and can be subsequently un-mounted. The
contents of the initial ram disk are designed to allow
system startup to occur in two phases, where the kernel
comes up with a minimum set of compiled-in drivers,
and where additional modules are loaded from the new
root file system.

For an operating system install (Linux) the following
steps are executed once the kernel and ramdisk have been
loaded:
• via init/rc.d, bring in an install script, which

o partitions the disk.
o makes a file system.
o rcp’s tar files for the file system.
o unpacks the tar files.
o does host IP configuration.
o rsh’s to the BOOTP server to comment

itself out of the /etc/bootptab file.
o reboots.

For a BIOS or firmware install or upgrade the
following steps are executed once DOS and the ramdisk
have been loaded:
• autoexec.bat executes, which then

o does the firmware/BIOS upgrade/install.
o using BOOTP discovers the host IP.
o ftp’s stdout/stderr to bootp server.
o rsh’s to bootp server to comment itself out

of the /etc/bootptab file.
o reboots.

The above procedure can be executed in parallel for
more than one worker node. Since the procedure involves
a single head node (bootp server) serving all the worker
nodes, it involves a single point of failure. To avoid such
a failure we execute the procedure on a fixed number of
worker nodes, chosen depending on the network transfer
rate and the maximum load bearing capacity of the bootp
server. The above procedure does not scale well to
hundreds of worker nodes so a multicast version is under
development.

4. Fermi Tools

In this section we will talk about three primary tools
which we use either standalone or in conjunction with
each other. They are rgang, fermistat and fermitrack.

Nearly every system administrator tasked with
operating a cluster of Unix machines will eventually find
or write a tool, which will execute the same command on
all of the nodes. At Fermilab we call this tool rgang. On
each node rgang executes the given command via rsh or
ssh, displaying the result delimited by a node-specific
header. The original rgang at FermiLab was
implemented in Bourne shell.

Because the original rgang executed the commands
on the specified nodes serially, execution time was
proportional to the number of nodes. We have
implemented, in Python, a parallel version of rgang. This
version forks separate rsh/ssh children, which execute in
parallel. After successfully waiting on returns from each
child or after timing out, this version of rgang displays
the node responses in identical fashion to the original
shell version of rgang. In addition, the latest rgang
returns the OR of all of the exit status values of the
commands executed on each of the nodes.

Simple commands execute via this rgang on all 80
nodes of one of our clusters in about 3 seconds. To allow
scaling to kiloclusters, the new rgang can optionally
utilize a tree-structure, via an "nway" switch. When so
invoked, rgang uses rsh/ssh to spawn copies of itself on
multiple nodes. These copies in turn spawn additional
copies. A few examples below explain this in more
detail.

Example 1. nway = 0 (default)

In example 1 with an nway option of 0 or
default, the rgang command forks off rsh or ssh
commands in parallel from the start node onto all the
worker nodes.

 wnode1

 wnode2

start node wnode3

 wnode4

 wnode5

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint cs.DC/0307021TUIT005

Example 2. nway = 2

In example 2 with an nway option of 2, the
rgang command uses rsh/ssh to spawn copies of itself
onto multiple nodes. These copies in turn spawn
additional copies.

What motivated us to write fermistat was the
desire for an interface that would integrate tools from
OpenPBS with rgang. In the PBS execution environment
a worker node is in one of the following states at any
time: free, down, offline, reserved, job-exclusive or job-
sharing. PBS provides commands that allow a system
administrator to set a worker node free or offline
depending on the state of the node. Fermistat works in
conjunction with the PBS tools, taking a list of worker
nodes as generated by rgang and executing the PBS
command in series to set the appropriate state of the
worker node.

For example, should the worker nodes wnode21,
wnode22, wnode23 and wnode24 have a hardware
problem and need to be placed offline for further
investigation, we could execute the following commands
in the PBS environment:

[me]$> pbsnodes –o wnode21
[me]$> pbsnodes –o wnode22
[me]$> pbsnodes –o wnode23
[me]$> pbsnodes –o wnode24

With fermistat we can affect the same result in a

single command as follows.

[me]$> fermistat –o wnode2{ 1-4}

The pattern wnode2{ 1-4} is passed to rgang,
which expands the pattern to a list of worker nodes as
wnode21, wnode22, wnode23 and wnode24. fermistat
executes the pbsnodes command in series for each
worker node in the expanded list. Scaling to hundreds of
nodes is not very efficient as the above commands are
executed in series. A parallel version of fermistat is under
development. rgang can be used to generate node lists
from more complex patterns than shown in the example
above.

Consider a 4-node parallel job 12xy.myjob
executing on the nodes wnode33, wnode53, wnode61
and wnode84. The fermistat “ -l” option allows the user to
list the nodes belonging to a PBS job as follows:

[me]$> fermistat –l 12xy.myjob
 wnode33
 wnode53
 wnode61
 wnode84

This output can be piped to rgang to execute the

desired command as follows:

[me]$> fermistat –l 12xy.myjob | rgang - <command>

The list of nodes generated by fermistat can be
piped to another invocation of fermistat to put the nodes
offline as follows:

[me]$> fermistat –l 12xy.myjob | fermistat -o -
 pbsnodes –o wnode33
 pbsnodes –o wnode53
 pbsnodes –o wnode61
 pbsnodes –o wnode84

Fermitrack is a primitive accounting system, used in

conjunction with the OpenPBS accounting system.
OpenPBS appends accounting information such as
resource usage (wall time, cputime, node usage, and so
forth) into an accounting file. The command to submit a
pbs job (qsub), patched with code from Argonne
National Lab [4], checks a flat project file for either the
default project associated with the current user, or for a
valid project specified by the user. If neither succeeds the
job is rejected. fermitrack reads accounting information
each night from the OpenPBS accounting file and charge
projects for cluster usage. If a particular project exceeds
its limit, fermitrack removes it from the project file, thus
automatically ensuring that a future qsub will reject that
project when a job is submitted under that project name.
fermitrack also keeps an account of cluster usage per
project for later investigation and charge-back.

5. Integration of tools for health and status

monitoring

Monitoring, logging and health data are transferred
at regular intervals to the head nodes of our clusters. The
worker nodes collect health data (CPU temperature, fan
speed, voltages etc) from the sensor data repository
maintained by the BMC using our IPMI software and
send this information to the head node via the syslog udp
socket.

At regular intervals, the head node issues a series of
commands via rgang to check on resource usage on each
worker node, such as disk space and client services (such
as the OpenPBS client process). The head node checks
whether the resource usage and health data for each

 wnode1
 wnode2

 wnode3
start node

 wnode4
 wnode5

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint cs.DC/0307021TUIT005

worker are within safe limits. If not, alarms are generated
in the form of an email and a blinking node name on the
web monitoring pages.

A perl script that produces a graphical representation
displaying the monitoring data in an easy to comprehend
format for both the system administrator and user
generates the web monitoring pages. The status of each
node is displayed in a color-coded format. Nodes that
have health or resource problems are highlighted in red
to attract attention.

The head node also executes fermitrack, our
software accounting extension to OpenPBS, at regular
intervals to check on project resource usage. In case of
project violations, when all assigned time is used up by a
particular project, an email is sent to notify the system
administrators to take appropriate action.

6. Conclusion

The tools and techniques that we have coded and
developed at Fermilab for our SciDAC Lattice QCD
clusters provide us flexibility and hardware independence
for monitoring and debugging. They allow us to add or
remove extensions to current available open source
monitoring software, to integrate our own tools with
current open source software, and to develop more
scalable monitoring software to meet our growing
demands.

The primary limitations to our current
monitoring tools are single points of failure and
scalability. As we add faster nodes and computer
networks to our current setup, we expect execution times
to reduce, thus allowing some scaling to larger numbers
of workers. Another solution is to develop multicast
versions of our tools. Still another is to have more than
one monitoring node collecting health and resource usage
data for groups of nodes, thus eliminating the single point
of failure.

As we scale to many hundreds of nodes in our
clusters, monitoring and administration require more
manpower, attention and capacity. This growth will
continue to drive development of new tools and
techniques.

Acknowledgments

Work supported by Universities Research Association
Inc. under Contract No. DE-AC02-76CH03000 with the
United States Department of Energy.

References

[1]. http://www.openpbs.org
[2]. http://www.intel.com/design/servers/ipmi
[3]. http://etherboot.sourceforge.net/doc/html/mknbi.html
[4]. http://www-unix.mcs.anl.gov/openpbs/

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint cs.DC/0307021TUIT005

