

Building A High Performance Parallel File System

Using Grid Datafarm and ROOT I/O
Y. Morita, H. Sato, Y. Watase

KEK, Tsukuba, Ibaraki 305-0801, JAPAN

O. Tatebe, S. Sekiguchi

AIST, Tsukuba, Ibaraki 305-8568, JAPAN

S. Matsuoka

Tokyo Institute of Technology, Meguro, Tokyo 152-8552, JAPAN

N. Soda

Software Research Associates, Inc., Naka, Nagoya, 460-0003, JAPAN

A. Dell'Acqua

CERN, CH-1211, Geneve 23, Switzerland

Sheer amount of petabyte scale data foreseen in the LHC experiments require a careful consideration of the persistency design and the
system design in the world-wide distributed computing. Event parallelism of the HENP data analysis enables us to take maximum
advantage of the high performance cluster computing and networking when we keep the parallelism both in the data processing phase, in
the data management phase, and in the data transfer phase. A modular architecture of FADS/Goofy, a versatile detector simulation
framework for Geant4, enables an easy choice of plug-in facilities for persistency technologies such as Objectivity/DB and ROOT I/O.
The framework is designed to work naturally with the parallel file system of Grid Datafarm (Gfarm). FADS/Goofy is proven to generate
106 Geant4-simulated Atlas Mockup events using a 512 CPU PC cluster. The data in ROOT I/O files is replicated using Gfarm file
system. The histogram information is collected from the distributed ROOT files. During the data replication it has been demonstrated to
achieve more than 2.3 Gbps data transfer rate between the PC clusters over seven participating PC clusters in the United States and in
Japan.

1. INTRODUCTION

MONARC collaboration has proposed a multi-tier and
hierarchical world-wide networks of computing centers for
widely distributed data analysis for the LHC experiments
[1]. Grid technology is foreseen to provide a secure, scalable
and industrial standard distributed computing environment
[2]. In such environment, efficient and well-designed data
replication and job scheduling algorithms are necessary by
carefully simulating the system behavior [3].

Typical data analysis in high energy physics experiments
are based on the data unit of events. To take maximum
advantage of the event parallelism to achieve highly scalable
CPU and I/O performance, both in the local area
environment and in the world-wide environment, we have
proposed and developed Grid Datafarm architecture [4]. A
raw I/O benchmark with the parallel file system has
achieved 1.97 GB/s with 64 nodes [5]. Combined with the
Geant4 detector simulation framework FADS/Goofy, a good
scalability has been demonstrated with Objectivity/DB as an
I/O module [6].

In the view point of software architecture, experiments'
software suit must be properly insulated from the technology
choices of the underlying hardware and software resources.
Discussion towards the LHC-common solution for the lower
level software suits [7] made it clear that the framework for
the high energy physics data analysis must be modular,
robust and lightweight, and yet it must work with a highly
scalable computing environment.

In this paper we report the software development of the
modular architecture of the FADS/Goofy I/O framework,

and the performance tests of the simulated detector hit
information using ROOT I/O.

2. SOFTWARE SUIT

2.1. FADS/Goofy

FADS/Goofy is a light weight, object-oriented framework
for the detector simulation using Geant4 [8,9]. It consists of
a small, autonomous executable goofy and a set of
framework service shared libraries. Late binding mechanism
of C++ allows goofy to load the service modules at runtime,
thus expanding the functionality of the framework without
re-linking goofy . Modular detector construction factories
allow users to build the Geant4 geometry with XML detector
description, NOVA/MySQL database [10], or the native
Geant4 geometry classes. Similarly, histogramming and
graphic display libraries can be used with the corresponding
service modules for HBOOK [11] and ROOT [12].

User detector code can also be built using the same late
binding mechanism, and it provides an easy to build, quick
turn-around and modular detector code development for a
very complex detector geometry such as ATLAS.

Once the detector code is validated, the same set of shared
libraries can also be used in the ATLAS main analysis
framework, called ATHENA [13].

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint cs.DC/0306092TUDT010

2.2. ROOT I/O

ROOT is a powerful and flexible statistical data analysis
tool [11], and it can also be used as a simple object
streaming package with ROOT TTree object.

We have developed the persistency module of
FADS/Goofy in such a way that the object I/O is controlled
through the transaction managers of user defined objects.
Transient objects are not affected by changing the different
I/O service modules such as for Objectivity/DB and ROOT
I/O.

For each sub detector, user has to provide a Geant4 hit
class and the I/O property definition file called *.rootio. A
perl script fadsrootio.pl then automatically generates the
necessary adapter classes for the ROOT I/O (fig. 1).

Figure 1: fadsrootio.pl generates the ROOT I/O module
classes based on the user defined *.rootio file.

At runtime, hit collections from each sub detector are

stored into a ROOT Tree Branch as a TClonesArray at each
event.

Figure 2 shows an example of the user defined *.rootio
file. It resembles to writing a persistent object description
file for storing the object data member with a constructor
method and retrieving with a make_transient method. User
can utilize predefined macros such as @float@ and user
defined macro @class_name@ to make the description
universal and portable for other part of the detector, or for
the other I/O service module of FADS/Goofy.

This persistency scheme has been fed back to the Geant4
5.0 persistency examples as g4rootio.pl.

2.3. Gfarm

The Grid Datafarm (Gfarm) is architecture for petascale
data-intensive computing on the Grid [4]. The model
specifically targets applications where data primarily
consists of a set of records or objects which are analyzed
independently. Gfarm takes advantage of the data access
locality to achieve a scalable I/O bandwidth using an
enhanced parallel file system integrated with process
scheduling and file distribution. It provides a global, Grid -

enabled, fault-tolerant parallel file system whose I/O
bandwidth scales to the TB/s range, and which incorporates
fast file transfer techniques and wide-area replica
management.

Figure 2: Example of the user defined *.rootio file.

For the case of FADS/Goofy, the ROOT I/O file is a
collection of events which in turn are collections of
TClonesArray of the sub detector hits which can be stored
and analyzed independently. This data model makes it
natural for take maximum advantage of the Gfarm parallel
file system.

FADS/Goofy jobs submitted to the Gfarm are distributed
to the cluster nodes, and the files generated at each node are
registered as a single local file into the metadata catalog.
Users can replicate the logical files for their analysis, fault -
tolerant backups, or for an efficient file transfer over wide-
area network with parallel transfer.

3. PERFORMANCE EVALUATION

To test the scalability of the Gfarm-based ROOT I/O
performance with FADS/Goofy, 256 nodes dual Athlon MP
1900+ (1.6GHz) PC cluster Presto III, at Tokyo Institute of

CalorHit

CalorHitRoot

CalorHit.rootio

CalorHitsRoot

CalorHitRootIO

TClonesArray

TBranch

PersistencyManager
User Code

RootTransManagerfadsrootio.pl

setset class_name class_name Pers01CalorHit Pers01CalorHit
setset collection_class collection_class Pers01CalorHitsCollection Pers01CalorHitsCollection
setset collection_base_class collection_base_class G4VHitsCollection G4VHitsCollection
setset sdet_name sdet_name Pers01CalorHit Pers01CalorHit
setset array_io_base VPHitsCollectionIO array_io_base VPHitsCollectionIO
set catalogset catalog HCIOentryT HCIOentryT
setset global_declaration global_declaration
 class @ class @class_nameclass_name@; // forward declaration@; // forward declaration
....
setset add_header_src add_header_src
 @ @class_nameclass_name@.@.hhhh
 G4ThreeVector. G4ThreeVector.hhhh
 G4RotationMatrix. G4RotationMatrix.hhhh
....
set memberset member
 @float@ @float@ EdepAbs EdepAbs ;;
 @float@ @float@ EdepGap EdepGap;;
 @float@ @float@ TrackLengthAbs TrackLengthAbs;;
 @float@ @float@ TrackLengthGap TrackLengthGap;;
....
set constructorset constructor
 @ @class_rootclass_root@(@@(@class_nameclass_name@* hit)@* hit)
 { {
 // copy data members of transient hit // copy data members of transient hit
 EdepAbs EdepAbs = hit-> = hit->GetEdepAbsGetEdepAbs();();
 EdepGap EdepGap = hit-> = hit->GetEdepGapGetEdepGap();();
 TrackLengthAbs TrackLengthAbs = hit-> = hit->GetTrakAbsGetTrakAbs();();
 TrackLengthGap TrackLengthGap = hit-> = hit->GetTrakGapGetTrakGap();();
 } }
....
set methodset method
 @ @class_nameclass_name@* @@* @make_transientmake_transient@()@()
 { {
 // create a transient class // create a transient class
 @ @class_nameclass_name@* hit = new @@* hit = new @ class_nameclass_name@();@();

 hit-> hit->AddAbsAddAbs((EdepAbsEdepAbs,, TrackLengthAbs TrackLengthAbs););
 hit-> hit->AddGapAddGap((EdepGapEdepGap ,, TrackLengthGap TrackLengthGap););

 return hit; return hit;
 } }
....

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint cs.DC/0306092TUDT010

Technology, was used. Each node is equipped with 756MB
memory and an interface to Myrinet 2K. Total capacity of
the IDE disks is 100TB.

ROOT I/O persistency module for a simple calorimeter hit
class was used for the I/O benchmark. Four float values in
Figure 2 were filled with gaussian random numbers, and
stored and retrieved with the Gfarm parallel file system. Hits
were repeated 1,000 times in each event. Typical
compression factor with ROOT I/O was 3.5 and average
event size was 7.5KB.

Figure 3 shows the aggregated ROOT I/O performance
with the number of parallel nodes. A good scalability was
obtained up to 32 nodes in the case of reading. By increasing
nodes, aggregated throughput was dragged down by the
inclusions of several slow nodes.

Figure 3: Aggregated throughput of FADS/Goofy ROOT I/O
module with the parallel file system of Gfarm.

Detail inspection of the dragging nodes revealed various
reasons of different performance behaviors. In one case there
were some additional processes consuming the memory of
the node, such as sshd. In other cases the disk utilization and
the fragmentation was high. In some nodes disks were
replaced with new ones, and the throughput was improved
by factor 4 or more. In other words, running the parallel I/O
jobs with Gfarm is a good screening test for those non-
performing nodes.

It should be noted that the variance of the node
performance is dominated in the real PC cluster
environment, and every effort should be made to normalize
the participating nodes for achieving the high throughput
computing. The architectural limit of the Gfarm parallel file
system overhead is not visible in this measurement.

4. RELATED WORKS

The ROOT I/O persistency module was also used to
produce the full simulated ATLAS events with the Higgs to
four muon Monte Carlo generated events for the robustness
evaluation. Full detector simulation is a CPU-bound job and

a good parallelism was obtained for generating one million
events in two days, with 500 CPUs of Presto III PC cluster.

The simulated data was then replicated to the other PC
clusters from Tokyo Institute of Technology to AIST
through KEK with NII SuperSINET and IMnet. It was then
replicated to the United States with APAN/TransPAC
network, to participate in the Bandwidth Challenge of
SC2002. Aggregated file replication rate of 2.3 Gbps
between the SC2002 site and the other participating sites.
For the file replication over the Pacific, 741 Mbps transfer
rate has been achieved out of 893 Mbps link [14].

5. CONCLUDING REMARKS

A modular and versatile persistency framework has been
developed for FADS/Goofy. Its design allows the user code
to be isolated from the persistency technology choice.
Adapter classes for ROOT I/O can be generated
automatically with a perl script. Same user code can be
utilized for the Objectivity/DB or other persistency
packages.

A standalone performance test of the ROOT I/O
persistency module has been conducted on the Gfarm
parallel file system using PrestoIII, a PC cluster of Tokyo
Institute of Technology. A good scalability was obtained up
to a few tens of nodes, where differences in various types of
node performance in the real environment become apparent.
Aggregated throughput of the parallel file system is sensitive
to the performance of the few dragging nodes. The
architectural limit of the Gfarm is not visible in this
measurement.

Once the event data files are generated on the Gfarm
parallel file system, it was demonstrated to be very efficient
in replicating the files with Gfarm file replication
mechanism over wide area networks.

Acknowledgments

The authors wish to thank NII, the National Institute of
Informatics, and the KEK Network Group for their support
on high speed network connectivity in Japanese academic
institutions and to overseas connections. The authors are also
grateful for the continuous support of PrestoIII PC cluster by
the staff and students of Matsuoka Lab., especially Mr. K.
Shirose and Mr. Y. Takamiya of Tokyo Institute of
Technology. Mr. Tomeda's work at Okayama University on
building and checking the detector geometry of the silicon
tracker for the ATLAS inner detector was invaluable to this
work.

Work supported in part by Ministry of Education, Culture,
Sports, Science and Technology, Kakenhi Tokutei Ryoiki
(2) No. 13224034.

0

50

100

150

200

250

300

350

400

0 50 100 150

write
read

Nodes

Aggregated I/O (MB/s)

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint cs.DC/0306092TUDT010

References

 [1] MONARC Collaboration, “Models of Networked
Analysis at Regional Centres for LHC experiments:
Phase 2 report”, Technical Report CERN/LCB-001,
2000. http://www.cern.ch/MONARC/.

[2] Global Grid Forum, http://www.globalgridforum.org/.
[3] A. Takefusa et al., “Performance Analysis of

Scheduling and Replication Algorithms on Grid
Datafarm Architecture”, submitted to IPSJ Journal,
2003.

[4] O. Tatebe et al., “Grid Data Farm for Petascale Data
Intensive Computing”, Technical Report ETL-
TR2001-4, Electrotechnical Laboratory (2001),
http://datafarm.apgrid.org/pdf/gfarm-ETL-TR2001-
4.pdf.

[5] O. Tatebe et al., “Grid Datafarm Architecture for
Petascale Data Intensive Computing”, CCGrid2002,
pp.102-110, Berlin, May 2002.

[6] Y. Morita et al., “Grid Data Farm for Atlas
Simulation Data Challenges”, CHEP’01, pp.699-701,
Beijing, September 2001.

[7] LCG: LHC Computing Grid Project,
http://www.cern.ch/lcg/.

[8] FADS/Goofy,
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE
/OO/domains/simulation/.

[9] A. Dell'Acqua et al., “Development of the ATLAS
Simulation Framework”, CHEP’01, pp.510-513,
Beijing, September 2001.

[10] NOVA/MySQL database for ATLAS detector
geometry,
http://atlassw1.phy.bnl.gov/NOVA/index.php3.

[11] HBOOK,
http://wwwasdoc.web.cern.ch/wwwasdoc/hbook/HB
OOKMAIN.html.

[12] ROOT, http://root.cern.ch/
[13] ATHENA,

http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE
/OO/architecture/General/index.html

[14] O. Tatebe et al., “Worldwide Fast File Replication on
Grid Datafarm”, submitted to this conference.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint cs.DC/0306092TUDT010

