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Sheer amount of petabyte scale data foreseen in the LHC experiments require a careful consideration of the persistency design and the 
system design in the world-wide distributed computing. Event parallelism of the HENP data analysis enables us to take maximum 
advantage of the high performance cluster computing and networking when we keep the parallelism both in the data processing phase, in 
the data management phase, and in the data transfer phase. A modular architecture of FADS/Goofy, a versatile detector simulation 
framework for Geant4, enables an easy choice of plug-in facilities for persistency technologies such as Objectivity/DB and ROOT I/O. 
The framework is designed to work naturally with the parallel file system of Grid Datafarm (Gfarm). FADS/Goofy is proven to generate 
106 Geant4-simulated Atlas Mockup events using a 512 CPU PC cluster.  The data in ROOT I/O files is replicated using Gfarm file 
system.  The histogram information is collected from the distributed ROOT files. During the data replication it has been demonstrated to 
achieve more than 2.3 Gbps data transfer rate between the PC clusters over seven participating PC clusters in the United States and in 
Japan. 

 

1. INTRODUCTION 

MONARC collaboration has proposed a multi-tier and 
hierarchical world-wide networks of computing centers for 
widely distributed data analysis for the LHC experiments 
[1]. Grid technology is foreseen to provide a secure, scalable 
and industrial standard distributed computing environment 
[2]. In such environment, efficient and well-designed data 
replication and job scheduling algorithms are necessary by 
carefully simulating the system behavior [3]. 

Typical data analysis in high energy physics experiments 
are based on the data unit of events. To take maximum 
advantage of the event parallelism to achieve highly scalable 
CPU and I/O performance, both in the local area 
environment and in the world-wide environment, we have 
proposed and developed Grid Datafarm architecture [4]. A 
raw I/O benchmark with the parallel file system has 
achieved 1.97 GB/s with 64 nodes [5]. Combined with the 
Geant4 detector simulation framework FADS/Goofy, a good 
scalability has been demonstrated with Objectivity/DB as an 
I/O module [6]. 

In the view point of software architecture, experiments' 
software suit must be properly insulated from the technology 
choices of the underlying hardware and software resources. 
Discussion towards the LHC-common solution for the lower 
level software suits [7] made it clear that the framework for 
the high energy physics data analysis must be modular, 
robust and lightweight, and yet it must work with a highly 
scalable computing environment. 

In this paper we report the software development of the 
modular architecture of the FADS/Goofy I/O framework, 

and the performance tests of the simulated detector hit 
information using ROOT I/O. 

 

2. SOFTWARE SUIT 

2.1. FADS/Goofy 

FADS/Goofy is a light weight, object-oriented framework 
for the detector simulation using Geant4 [8,9]. It consists of 
a small, autonomous executable goofy  and a set of 
framework service shared libraries. Late binding mechanism 
of C++ allows goofy  to load the service modules at runtime, 
thus expanding the functionality of the framework without 
re-linking goofy . Modular detector construction factories 
allow users to build the Geant4 geometry with XML detector 
description, NOVA/MySQL database [10], or the native 
Geant4 geometry classes. Similarly, histogramming and 
graphic display libraries can be used with the corresponding 
service modules for HBOOK [11] and ROOT [12]. 

User detector code can also be built using the same late 
binding mechanism, and it provides an easy to build, quick 
turn-around and modular detector code development for a 
very complex detector geometry such as ATLAS. 

Once the detector code is validated, the same set of shared 
libraries can also be used in the ATLAS main analysis 
framework, called ATHENA [13]. 
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2.2. ROOT I/O 

ROOT is a powerful and flexible statistical data analysis 
tool [11], and it can also be used as a simple object 
streaming package with ROOT TTree object. 

We have developed the persistency module of 
FADS/Goofy in such a way that the object I/O is controlled 
through the transaction managers of user defined objects. 
Transient objects are not affected by changing the different 
I/O service modules such as for Objectivity/DB and ROOT 
I/O. 

For each sub detector, user has to provide a Geant4 hit 
class and the I/O property definition file called *.rootio. A 
perl script fadsrootio.pl then automatically generates the 
necessary adapter classes for the ROOT I/O (fig. 1). 

 
Figure 1: fadsrootio.pl  generates the ROOT I/O module 
classes based on the user defined *.rootio file. 

 
At runtime, hit collections from each sub detector are 

stored into a ROOT Tree Branch as a TClonesArray at each 
event. 

Figure 2 shows an example of the user defined *.rootio 
file. It resembles to writing a persistent object description 
file for storing the object data member with a constructor 
method and retrieving with a make_transient method. User 
can utilize predefined macros such as @float@ and user 
defined macro @class_name@ to make the description 
universal and portable for other part of the detector, or for 
the other I/O service module of FADS/Goofy. 

This persistency scheme has been fed back to the Geant4 
5.0 persistency examples as g4rootio.pl. 

2.3. Gfarm 

The Grid Datafarm (Gfarm) is architecture for petascale 
data-intensive computing on the Grid [4]. The model 
specifically targets applications where data primarily 
consists of a set of records or objects which are analyzed 
independently. Gfarm takes advantage of the data access 
locality to achieve a scalable I/O bandwidth using an 
enhanced parallel file system integrated with process 
scheduling and file distribution.  It provides a global, Grid -

enabled, fault-tolerant parallel file system whose I/O 
bandwidth scales to the TB/s range, and which incorporates 
fast file transfer techniques and wide-area replica 
management. 

 

Figure 2: Example of the user defined *.rootio file. 
 
 

For the case of FADS/Goofy, the ROOT I/O file is a 
collection of events which in turn are collections of 
TClonesArray of the sub detector hits which can be stored 
and analyzed independently. This data model makes it 
natural for take maximum advantage of the Gfarm parallel 
file system.  

FADS/Goofy jobs submitted to the Gfarm are distributed 
to the cluster nodes, and the files generated at each node are 
registered as a single local file into the metadata catalog. 
Users can replicate the logical files for their analysis, fault -
tolerant backups, or for an efficient file transfer over wide-
area network with parallel transfer. 

3. PERFORMANCE EVALUATION 

To test the scalability of the Gfarm-based ROOT I/O 
performance with FADS/Goofy, 256 nodes dual Athlon MP 
1900+ (1.6GHz) PC cluster Presto III, at Tokyo Institute of 
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setset class_name class_name Pers01CalorHit Pers01CalorHit
setset collection_class collection_class Pers01CalorHitsCollection Pers01CalorHitsCollection
setset collection_base_class collection_base_class G4VHitsCollection G4VHitsCollection
setset sdet_name sdet_name Pers01CalorHit Pers01CalorHit
setset array_io_base VPHitsCollectionIO array_io_base VPHitsCollectionIO
set catalogset catalog HCIOentryT HCIOentryT
setset global_declaration global_declaration
  class @  class @class_nameclass_name@;    // forward declaration@;    // forward declaration
....
setset add_header_src add_header_src
  @  @class_nameclass_name@.@.hhhh
  G4ThreeVector.  G4ThreeVector.hhhh
  G4RotationMatrix.  G4RotationMatrix.hhhh
....
set memberset member
  @float@  @float@  EdepAbs  EdepAbs ;;
  @float@  @float@  EdepGap  EdepGap;;
  @float@  @float@  TrackLengthAbs  TrackLengthAbs;;
  @float@  @float@  TrackLengthGap  TrackLengthGap;;
....
set constructorset constructor
  @  @class_rootclass_root@(@@(@class_nameclass_name@* hit)@* hit)
  {  {
    // copy data members of transient hit    // copy data members of transient hit
    EdepAbs    EdepAbs = hit-> = hit->GetEdepAbsGetEdepAbs();();
    EdepGap    EdepGap = hit-> = hit->GetEdepGapGetEdepGap();();
    TrackLengthAbs    TrackLengthAbs = hit-> = hit->GetTrakAbsGetTrakAbs();();
    TrackLengthGap    TrackLengthGap = hit-> = hit->GetTrakGapGetTrakGap();();
  }  }
....
set methodset method
  @  @class_nameclass_name@* @@* @make_transientmake_transient@()@()
  {  {
    // create a transient class    // create a transient class
    @    @class_nameclass_name@* hit = new @@* hit = new @ class_nameclass_name@();@();

    hit->    hit->AddAbsAddAbs((EdepAbsEdepAbs,, TrackLengthAbs TrackLengthAbs););
    hit->    hit->AddGapAddGap((EdepGapEdepGap ,,  TrackLengthGap TrackLengthGap););

    return hit;    return hit;
  }  }
....
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Technology, was used. Each node is equipped with 756MB 
memory and an interface to Myrinet 2K. Total capacity of 
the IDE disks is 100TB.  

ROOT I/O persistency module for a simple calorimeter hit 
class was used for the I/O benchmark.  Four float values in 
Figure 2 were filled with gaussian random numbers, and 
stored and retrieved with the Gfarm parallel file system. Hits 
were repeated 1,000 times in each event. Typical 
compression factor with ROOT I/O was 3.5 and average 
event size was 7.5KB. 

Figure 3 shows the aggregated ROOT I/O performance 
with the number of parallel nodes. A good scalability was 
obtained up to 32 nodes in the case of reading. By increasing 
nodes, aggregated throughput was dragged down by the 
inclusions of several slow nodes.  

 

Figure 3: Aggregated throughput of FADS/Goofy ROOT I/O 
module with the parallel file system of Gfarm. 
 

Detail inspection of the dragging nodes revealed various 
reasons of different performance behaviors. In one case there 
were some additional processes consuming the memory of 
the node, such as sshd. In other cases the disk utilization and 
the fragmentation was high. In some nodes disks were 
replaced with new ones, and the throughput was improved 
by factor 4 or more. In other words, running the parallel I/O 
jobs with Gfarm is a good screening test for those non-
performing nodes. 

It should be noted that the variance of the node 
performance is dominated in the real PC cluster 
environment, and every effort should be made to normalize 
the participating nodes for achieving the high throughput 
computing.  The architectural limit of the Gfarm parallel file 
system overhead is not visible in this measurement. 

4. RELATED WORKS 

The ROOT I/O persistency module was also used to 
produce the full simulated ATLAS events with the Higgs to 
four muon Monte Carlo generated events for the robustness 
evaluation. Full detector simulation is a CPU-bound job and 

a good parallelism was obtained for generating one million 
events in two days, with 500 CPUs of Presto III PC cluster.  

The simulated data was then replicated to the other PC 
clusters from Tokyo Institute of Technology to AIST 
through KEK with NII SuperSINET and IMnet. It was then 
replicated to the United States with APAN/TransPAC 
network, to participate in the Bandwidth Challenge of 
SC2002. Aggregated file replication rate of 2.3 Gbps 
between the SC2002 site and the other participating sites. 
For the file replication over the Pacific, 741 Mbps transfer 
rate has been achieved out of 893 Mbps link [14]. 

5. CONCLUDING REMARKS 

A modular and versatile persistency framework has been 
developed for FADS/Goofy. Its design allows the user code 
to be isolated from the persistency technology choice. 
Adapter classes for ROOT I/O can be generated 
automatically with a perl script. Same user code can be 
utilized for the Objectivity/DB or other persistency 
packages. 

A standalone performance test of the ROOT I/O 
persistency module has been conducted on the Gfarm 
parallel file system using PrestoIII, a PC cluster of Tokyo 
Institute of Technology. A good scalability was obtained up 
to a few tens of nodes, where differences in various types of 
node performance in the real environment become apparent. 
Aggregated throughput of the parallel file system is sensitive 
to the performance of the few dragging nodes. The 
architectural limit of the Gfarm is not visible in this 
measurement. 

Once the event data files are generated on the Gfarm 
parallel file system, it was demonstrated to be very efficient 
in replicating the files with Gfarm file replication 
mechanism over wide area networks.  
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