
The PROOF Distributed Parallel Analysis Framework based on ROOT
Maarten Ballintijn and Gunther Roland
MIT, Cambridge
Rene Brun
CERN, ROOT Project
Fons Rademakers
CERN, ALICE Collaboration and ROOT Project

The development of the Parallel ROOT Facility, PROOF, enables a physicist to analyze and understand much
larger data sets on a shorter time scale. It makes use of the inherent parallelism in event data and implements
an architecture that optimizes I/O and CPU utilization in heterogeneous clusters with distributed storage. The
system provides transparent and interactive access to gigabytes today. Being part of the ROOT framework
PROOF inherits the benefits of a performant object storage system and a wealth of statistical and visualization
tools. This paper describes the key principles of the PROOF architecture and the implementation of the system.
We will illustrate its features using a simple example and present measurements of the scalability of the system.
Finally we will discuss how PROOF can be interfaced and make use of the different Grid solutions.

1. INTRODUCTION

The Parallel ROOT Facility, PROOF, is an
extension of the well known ROOT system
(http://root.cern.ch/) [1] that allows the easy
and transparent analysis of large sets of ROOT files
in parallel on remote computer clusters. The main
design goals for the PROOF system are transparency,
scalability and adaptability. With transparency
we mean that there should be as little difference
as possible between a local ROOT based analysis
session and a remote parallel PROOF session, both
being interactive and giving the same results. With
scalability we mean that the basic architecture should
not put any implicit limitations on the number
of computers that can be used in parallel. And
with adaptability we mean that the system should
be able to adapt itself to variations in the remote
environment (changing load on the cluster nodes,
network interruptions, etc.).

Being an extension of the ROOT system, PROOF
is designed to work on objects in ROOT data stores.
These objects can be individually keyed objects as well
as TTree based object collections. By logically group-
ing many ROOT files into a single object very large
data sets can be created. In a local cluster environ-
ment these data files can be distributed over the disks
of the cluster nodes or made available via a NAS or
SAN solution.

In the near future, by employing Grid technologies,
we plan to extend PROOF from single clusters to vir-
tual global clusters. In such an environment the pro-
cessing may take longer (not interactive), but the user
will still be presented with a single result, like the pro-
cessing was done locally.

The PROOF development is a joint effort between
CERN and MIT.

Figure 1: PROOF Architecture overview

2. THE PROOF SYSTEM

2.1. System Architecture

PROOF consists of a 3-tier architecture, the ROOT
client session, the PROOF master server and the
PROOF slave servers. The user connects from his
ROOT session to a master server on a remote clus-
ter and the master server in turn creates slave servers
on all the nodes in the cluster. Queries are processed
in parallel by all the slave servers. Using a pull pro-
tocol the slave servers ask the master for work pack-
ets, which allows the master to distribute customized
packets for each slave server. Slower slaves get smaller
work packets than faster ones and faster ones process
more packets. In this scheme the parallel process-
ing performance is a function of the duration of each
small job, packet, and the networking bandwidth and
latency. Since the bandwidth and latency of a net-
worked cluster are fixed the main tunable parameter
in this scheme is the packet size. If the packet size is
chosen too small the parallelism will suffer due to the
communication overhead caused by the many pack-
ets sent over the network between the master and the
slave servers. If the packet size is too large the effect
of the difference in performance of each node is not
evened out sufficiently. This allows the PROOF sys-

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint physics/0306110TUCT004, TULT003

class TSelector {
TList *fInput;
TList *fOutput;
TObject *fObject;

void Init(TTree *tree);
void Begin(TTree *tree);
const char *GetOption() const;
Bool_t Process(Int_t entry);
void Terminate();

};

Table I Simplified TSelector class definition

tem to adapt itself to the performance and load on
each individual cluster node and to optimize the job
execution time.

2.2. TSelector Framework

The TSelector framework plays a central role in
the PROOF system. It allows users to write their
analysis code in a way that enables them to process
small data samples locally on a workstation and using
the same code to process large data sets in parallel on
a cluster or the grid using PROOF.

To use the framework a user derives a class from
TSelector and implements the member functions
that are part of the protocol. The framework also
specifies how input objects are made available to the
selector object and how output objects are returned
to the user or client session.

The TTree::MakeSelector() function generates a
skeleton version of a TSelector derived class that
should be used as the basis for the analysis code. The
user can either edit the generated files directly or cre-
ate a class that inherits from the generated class. The
second option makes sense if the definition of the tree
is expected to change. It allows for the class to be
easily regenerated without modifying the user class.
Table I lists the most important functions and mem-
bers which we will describe in some more detail.

The input objects are made available to the selector
in the list pointed to by fInput. The list is available
throughout the life of the selector. The objects in the
list are owned by the system. Each of the slaves has
a full copy of the list.

The Begin() function is called before any object or
event is processed. It is a good place to create things
like histograms and initialize data that is needed to
process each event. The Begin() function is called
once in each slave.

The Init() function is called each time a new file is
opened by the system. The generated code takes care
of setting up the branches in case of a tree analysis.
The user can extend this routine for example to read a

calibration object that pertains to the objects or tree
in that file.

The Process() function is called for each object or
event in the tree. When processing a tree it is up to
the user to decided which branches should be read and
when. Generally it is most efficient to read branches
as they are used. E.g. read the branch(es) that are
used to make the selection and only if the event is to
be processed read the rest of the branches that are
needed. When processing keyed objects the pointer to
the object is stored in the fObject member.

The Terminate() function is called after all objects
or events have been processed. It allows the user to do
a cleanup, like deleting temporary objects and closing
auxiliary files. It is also the place to do final calcu-
lations. The Terminate() function is called once in
each slave.

Finally the contents of the fOutput lists of all the
slaves are merged in the master and send back to the
client. The merging uses the special Merge(Tlist*)
API. The objects are fist grouped by name. Using
the introspection features provided by CINT [2], the
C++ interpreter used by ROOT, it is then determined
if the Merge() function is implemented for those ob-
jects. For histograms this is available by default. User
classes can implement the API if merging makes sense.
If the merge function is not available the individual
objects are returned to the client.

2.3. Specifying Data Sets

The TDSet class is used to specify the collection of
objects or trees that are to be processed with PROOF.
When analyzing trees the user must pass "TTree" to
the TDSet constructor. The TDSet::Add() function
is then used to add a file, directory within that file
and tree name to the set.

To process a collection of objects, the user must pass
the name of the class of the objects to the constructor.
In that case TDSet::Add() is used to add files and the
directories within them that contain the objects.

The contents of one TDSet can also be added to
another TDSet. The TDSet implements the Print()
function which allows the contents to be inspected.
Users can create TDSets ”by hand” but it is also fore-
seen that (Grid) catalogs will provide query interfaces
that return TDSets. It will be possible to use logi-
cal filenames rather then physical filenames to specify
files. The translation will be done using the API de-
fined by the abstract class TGrid in combination with
plugins implementing the communication with avail-
able catalogs.

2.4. The PROOF Package Manager

In complex analysis environments the analysis
scripts very likely depend on one or more external li-

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint physics/0306110TUCT004, TULT003

Table II The PROOF Package API

Int_t UploadPackage(const char *par, Int_t par = 1);
void ClearPackage(const char *package);
void ClearPackages();
Int_t EnablePackage(const char *package);
void ShowPackages(Bool_t all = kFALSE);
void ShowEnabledPackages(Bool_t all = kFALSE);

braries containing common algorithms. To be able to
run these scripts successfully on PROOF it is required
that these external libraries are available on each slave
node.

The PROOF package manager has been designed
to distribute and install these libraries on a PROOF
cluster. Packages are compressed tar files contain-
ing the library source or binaries with one addi-
tional PROOF-INF directory (like Java JAR files). This
PROOF-INF directory contains a SETUP.C script and,
optionally, a BUILD.sh shell script. The BUILD.sh
script is used to compile the library source on the
PROOF cluster, which might have a different type
of CPU or OS than the user’s local system. The
SETUP.C script is used to load the libraries into the
PROOF server processes. Package files are called PAR
(PROOF ARchive) files and must have a .par exten-
sion.

For example an Event.par file which provides a li-
brary called libEvent.so has the following BUILD.sh:

make libEvent.so

and SETUP.C:

Int_t SETUP()
{
gSystem->Load("libEvent");
return 1;

}

In a two step process packages are first uploaded to
PROOF and then enabled as required. The PROOF
package API (see table II) gives the user full control.
To avoid unnecessary transfer of par files the upload
command first asks the MD5 checksum of the remote
version of the package and, if it exists, checks it with
the one of the local version. Only when the check-
sums are different will the par file be transfered to the
PROOF cluster.

3. A REAL LIFE EXAMPLE

In this section we will use a simple but full fledged
example to illustrate the use of PROOF and to de-
scribe some of the features of the implementation.

Event

Track

Hit

Vertex

1..n

0..n

0..n

0..n

Figure 2: The AnT data model

3.1. Local Development

The data model underlying the tree in this exam-
ple is typical for a HEP experiment (see fig 2). The
tree contains a TClonesArray for a hit, track and ver-
tex class and a single event class. Relations between
hits, tracks and vertexes are expressed using TRef and
TRefArray.

For this example we use a very simple example
script. The relevant parts are included below. All
error checking has been omitted for brevity. In the
Init() function a single histogram is created which
is stored in the data member fVtx x of the selector
class.

void antsel::Begin(TTree *tree)
{
// Initialize the tree branches.
Init(tree);

fVtx_x = new TH1F("v","v",100,-10.,10.);
}

The Process() function reads the data, makes a
simple selection and fills the histogram. It uses the
fRMSSelVtx reference to get the proper vertex. In a
more elaborate version it would only read the event
branch for the test and read the vertex branch as
needed.

void antsel::Process(Int_t entry)
{
fChain->GetTree()->GetEntry(entry);

if (eventInfo->fPdlMean > 1500) {
TPhAnTVertex *vtx = (TPhAnTVertex*)
eventInfo->fRMSSelVtx->GetObject();

fVtx_x->Fill(vtx->fPos.X());
}

}

The Terminate() function adds the histogram to
the output list fOutput such that it will be returned
to the client by PROOF.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint physics/0306110TUCT004, TULT003

void antsel::Terminate()
{
fOutput->Add(fVtx_x);

}

Running the script on a typical laptop we can an-
alyze 2000 events, or 8 Mbyte, in about 6 seconds
(ROOT I/O has compressed the data in the tree by
a factor 5.) Once the script works as required we are
ready to run it using PROOF.

3.2. Session Setup

We start by creating a PROOF session. The argu-
ment specifies the PROOF cluster we want to connect
to.

root[1] gROOT->Proof("pgate.lns.mit.edu")

We first have to authenticate ourselves to the
PROOF server. All authentication methods imple-
mented in the standard ROOT TAuthenticate class
are available. The PROOF master server is then cre-
ated. The master server reads the proof.conf config-
uration file and uses the information to start a num-
ber of slave servers. The configuration file is provided
by the administrator of the PROOF cluster. It con-
tains information about the nodes that make up the
PROOF cluster, the relative performance of the nodes
and which nodes share a file system.

When all the slaves are started we are ready to run
queries. But before that we can configure packages.
For this example we’ll upload and enable a single pack-
age

root[2] gProof->UploadPackage("ant.par")
root[3] gProof->EnablePackage("ant")

Normally we only need to upload a package if it has
changed. The EnablePackage() function will cause
the package to be build in the case of a source package.
Finally the SETUP.C script is run on all slaves, loading
our library and making available its classes.

We will use a previously loaded script to create the
data set

root[4] TDSet *d = get_dataset()

Instead of creating the TDSet it might be returned by
a database or catalog query.

3.3. PROOF Run

We are now ready to use PROOF to process our
query. Using the same script that was used previously
and the data set we just created we issue the command

root[5] d->Process("antsel.C", "", 60000)

The system goes through a number of steps to im-
plement this command. First the selector script and
possibly its corresponding include file are send to the
master and from the master to the slaves. The system
will optimize this step if an up to date version of the
script is already available in the cluster. It also makes
use of the shared file system(s) if available.

Then the client sends the query message, including
the input objects, option and parameters, to the mas-
ter. The master determines the total number of events
in the dataset by having the slaves open the files in
the dataset in parallel. This information could in the
future also be obtained from a database, avoiding this
step in he process. The master server creates a list of
nodes with the files to be processed and their sizes.
This list will be used to optimize the distribution of
work over the slaves. The files have to be specified as
rootd URLs for this optimization to be available, e.g.
"root://proof.mit.edu/data/file.root".

The master now forwards the query to the slaves.
Each slave starts the script and enters a loop in which
it asks the master for work packets. The master
will allocate work to each slave using the informa-
tion about the location of the files. A slave will first
be assigned files which are on its local disk. When a
slave has exhausted all local files the rootd protocol
is used to process files on other nodes. If no location
information was available, .e.g if the files are stored
on a central NFS server, the algorithm reduces to a
round robin assignment of the files to the slaves. An
heuristic is used to determine the packet size. It takes
into account the number of slaves and their relative
performance as well as the total number of events to
be processed. The master monitors the real-time per-
formance of each slave allowing this heuristic to be
refined. The master also records which packet is pro-
cessed by which slave allowing error recovery to be
implemented in the case of slave failure.

When all events are processed the slaves send the
partial results to the master. Using the previously
described Merge() algorithm the master combines the
partial results and sends them to the client.

3.4. The Results

The processing of the above query ran in about
12 seconds using 8 slaves on 4 dual Athlon 1.4 GHz
machines. The amount of data processed was
240 Mbyte. This shows the large improvement of even
a small dedicated cluster over a typical desktop work-
station. A more precise measurement of the PROOF
performance will be presented in the next section.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint physics/0306110TUCT004, TULT003

Figure 3: Detailed Proof Session

4. SCALABILITY MEASUREMENTS

First performance measurements show a very good
and efficient scalability (see fig 4). For the tests we
used a Linux cluster of 32 nodes. Each node had
two Itanium 2 1 GHz CPU’s, 2x75 GB 15K SCSI
disk, 2 GB RAM and fast ethernet. The data set
to be analyzed consisted of 128 files totaling 8.8 GB
of data (9 million events). Each cluster node had 4
files (277 MB). Processing these 128 files using one
node took 325 seconds and 32 nodes in parallel only
12 seconds. One node processing only its 4 local files
took 9 seconds. This shows that the efficiency is about
88%. We also ran tests using all 64 CPU’s in the clus-
ter (two slaves per node). This showed the same lin-
earity but less efficiency, due to overhead in the Linux
SMP implementation and resource contention in each
node. All in all we expect an efficient scalability to at
least a 100 node cluster.

5. PROOF IN THE GRID ENVIRONMENT

To be able to build a global virtual PROOF cluster
we need to use the Grid services that are currently
being developed. The interfacing of PROOF to the
Grid can be done at several levels. The following levels
have been identified:

CPU’s
0 10 20 30

E
ve

n
ts

/s
ec

0

200

400

600

800
3x10

Figure 4: PROOF Scalability

• Interface to the grid file catalog allowing a user
to select a data set based on tags or logical file
names (using wildcards etc).

• Interface to the grid resource broker to find the
best location(s), based on the data set, where to
run the query. This could trigger the replication
of some missing files to a cluster (only when the
amount of data in the files is relatively small).

• Interface to the grid job queue manager to start
proof master and slave daemons on the remote
cluster. The ROOT client will then connect to

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint physics/0306110TUCT004, TULT003

these pre-started daemons to create a PROOF
session. This will require the grid queuing sys-
tem to support interactive high priority jobs.

We are currently working with the AliEn [3] Grid
developers on a prototype that implements step wise
the above scenarios. AliEn (http://alien.cern.ch) is a
grid solution tuned for typical HEP data processing.
It has been developed by the ALICE collaboration but
is experiment independent. It provides all commonly
understood Grid services, like: file catalog, replication
service, job queue manager, resource broker, authen-
tication service, monitoring, etc. It is entirely imple-
mented in Perl and has a C client API. AliEn is simple
to install and works reliably. In ALICE it is routinely
used for simulation and reconstruction. AliEn has also
been chosen as the grid component for the EU Mam-
moGrid project.

The ROOT and PROOF interface to AliEn, and
other Grid middleware, will be via a TGrid abstract
interface.

6. FUTURE WORK

Currently we are fine tuning PROOF for a sin-
gle cluster and are working with some ”early adopter
sites” that have setup dedicated clusters.

Several smaller and larger additions and refinements
of the system are already foreseen. General infras-
tructure for dynamic startup of the session will al-
low PROOF to co-exist with traditional batch system
as well as Grid based environments. This could be
extended to dynamic allocation and release of slaves
during the session, e.g. based on the data set to be
processed.

We are also working at combining multiple clusters
at geographically separated sites which will require

a hierarchy of master servers. Further integration of
PROOF and ROOT will drive the implementation of
event lists and friend trees. We are also working on
TTree::Draw() style functionality.

The Grid middle-ware is in wild development at the
moment and we are following closely these develop-
ments to make sure it will support the features we
need, especially facilities for interactive high priority
jobs and data services.

7. CONCLUSIONS

We demonstrated the PROOF system, part of the
widely adopted ROOT analysis environment, that al-
lows users to harness the power of a large cluster of
workstations from their desktops. PROOF greatly ex-
tends the amount and range of data that can be in-
teractively analyzed.
Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant No.
0219063.

References

[1] Rene Brun and Fons Rademakers, ROOT - An Ob-
ject Oriented Data Analysis Framework, Proceed-
ings AIHENP’96 Workshop, Lausanne, Sep. 1996,
Nucl. Inst. & Meth. in Phys. Res. A 389 (1997)
81-86. See also http://root.cern.ch/.

[2] C++ Interpreter - CINT, Masaharu Goto, CQ
publishing, ISBN4-789-3085-3 (Japanese). See also
http://root.cern.ch/root/Cint.html.

[3] P. Buncic et al, http://alien.cern.ch.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6 ePrint physics/0306110TUCT004, TULT003

