

Fine-Grained Authorization for Job and Resource Management Using Akenti
and the Globus Toolkit®

M. R. Thompson, A. Essiari
LBNL, Berkeley, CA 94705

K. Keahey, V, Welch, S. Lang
ANL, Argonne IL 60439

B. Liu
University of Houston, Houston, TX 77204

As the Grid paradigm is adopted as a standard way of sharing remote resources across organizational domains, the need for fine-grained
access control to these resources increases. This paper presents an authorization solution for job submission and control, developed as part
of the National Fusion Collaboratory, that uses the Globus Toolkit 2 and the Akenti authorization service in order to perform fine-grained
authorization of job and resource management requests in a Grid environment. At job startup, it allows the system to evaluate a user’s
Resource Specification Language request against authorization policies on resource usage (determining how many CPUs or memory a
user can use on a given resource or which executables the user can run). Furthermore, based on authorization policies, it allows other
virtual organization members to manage the user’s job.

1. INTRODUCTION

Users from different organizations who are geographically
dispersed but are working together to solve a common
problem, or related problems in a common domain, typically
organize themselves into virtual organizations (VOs) [5]. The
VO defines who its members are and (possibly) assigns roles
or attributes to the members. The VO also arranges with the
owners of various resources for VO member access. The
resources may consist of compute platforms, storage
elements, scientific instruments, data or services.

The National Fusion Collaboratory (NFC) [8] is an
example of such a VO. The NFC is building a FusionGrid to
provide computational and data services to its members.
Because the Globus Toolkit (GT2) [6] is so widely used as
Grid middleware, the NFC has chosen to use GT2 for remote
job submission and secure access to its common data servers.

While object-oriented distributed programming
frameworks such as Legion [4] and CORBA provide very
fine-grained access-control at the level of object methods,
GT2 provides a coarse-grained “admission control” facility
and leaves fine-grained access control up to the resource
provider. This simple approach is entirely acceptable for the
initial stages of a Grid, when there is a limited set of potential
users who negotiate access directly with the resource
providers, but it does not scale to large numbers of resource
hosts and users.

Hence, GT2 access control mechanisms must be extended
to meet the FusionGrid’s security needs. The solution we
present here is to integrate the Akenti authorization service
[9] with the Globus Toolkit.

Section 2 of this paper describes typical usage scenarios for
VO Grid use. Section 3 is a brief overview of how
authorization is currently handled in GT2. Section 4
introduces the Akenti authorization service. Section 5
describes our integration of the Globus Toolkit job manager
and Akenti authorization and how this model can be extended

to other authorization decision functions. Section 6 presents
our conclusions and outlines future work.

2. USAGE SCENARIOS AND REQUIREMENTS

Many different resource-sharing scenarios exist in a Grid
envirnoment. The shared resources may be basic compute
resources (e.g., compute cycles and storage elements);
sophisticated computer-controlled instruments; data elements
such as files and information in a databases; or services
provided by specialized application programs. Individual
resource providers may want detailed control over user
access, or they may want to delegate most of the control to
the VO. Multiple independent entities, called stakeholders,
may be entitled to some control over a resource. For example,
application code may be provided by one person or
organization and run on a computer provided by an
independent organization.

The use case that we are addressing in the NFC is that of
an application service provider [12] where both the code and
the compute resources are owned by the same entity. Selected
hosts within the NFC allow remote users to execute specific
codes. The FusionGrid has several sites that are providing
access to a limited number of application codes. Thus, the
sites want to restrict which executables may be run. Since
these are computationally intensive codes that may take a
long time to complete, the ability to query and control a job is
important. Thus jobs become dynamic resources that need
access control. The NFC wants to allow some of its users
access to development versions of the code and tools in
addition to the service codes. It may also want to allow some
users a higher quality of service.

In order to support fine-grained access, the access control
decision function (ADF) must be able to base its access
decisions on policy written in a moderately expressive policy
language. Such a language must be easy for stakeholders to
understand and must be extensible to allow for many types of
resources and conditions.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1TUBT006 ePrint cs.DC/0306070

In summary, the challenging access control requirements
that we address are as follows:

• Providing flexible policy-driven access control
• Federating policy from several independent sources
• Allowing long-running jobs to be treated as objects

whose management is subject to access control
decisions

• Integrating with the current GT2 job submission
mechanism with a minimum disturbance for the client
or the service provider

3. AUTHORIZATION IN THE GLOBUS
TOOLKIT

We assume the following model for job submission and
control. An interaction is initiated by a user submitting a
request to start a job, including the job description,
accompanied by the user’s Grid credentials, in the form of an
X.509 certificate [7]. In the current case this is just an identity
certificate and asserts no other attributes about the user. This
request is then evaluated by an access control decision
function (ADF) which may be called from several different
access control enforcement functions (AEFs) located in the
resource management modules. If the request is authorized, it
is started under a local credential (i.e., userid).

During the job execution, a VO user may submit
management requests composed of a management action
(e.g., request information, suspend or resume a job, cancel a
job). The resource manager may decide to perform the action
or to pass it on to the locally executing job.

In order to perform these transactions, the Globus Resource
Acquisition and Management (GRAM) [2] system is used.
GRAM has two major software components: the gatekeeper
and the job manager. The gatekeeper is responsible for
translating Grid credentials to local credentials (e.g. mapping
the user to a local account based on their Grid credentials)
and creating a job manager instance to handle the specific job
invocation request. The job manager is a Grid service which
instantiates and then provides for the ability to manage a job.
Figure 1 shows the interaction of these elements; in this
section we explain their roles and limitations.

3.1. Gatekeeper

The GRAM gatekeeper is responsible for authenticating
the requesting Grid user, authorizing a job invocation request,
and determining the account in which the job should be run.
Authentication, done using the Globus Toolkit’s Grid
Security Infrastructure (GSI) [1], verifies the validity of the
presented Grid credentials, the user’s possession of those
credentials, and the user's Grid identity as indicated by those
credentials. Authorization is based on the user’s Grid identity,
the site’s trust policy, and the site grid-mapfile, which maps
each allowed Grid identity to a local userid.

The gatekeeper then starts a job manager instance,
executing with the user’s local credential. This mode of
operation requires the user to have an account on the resource

and implements fine-grained access enforcement by
privileges of the account.

Client
User Cred

Gatekeeper
• authenticate user
• authorize user against

grid-mapfile
• map grid credential to

local credential
Root Cred

Job Manager
• no authorization on job

start
• limited authorization on

job control
User Cred

Application
Service

User Cred

Job submit

Job control

Create a grid
service

Start an application
service

Figure 1 Interaction of the main components of GRAM

3.2. Job Manager

The GRAM job manager parses the user’s request,
including the job description, and calls the resource’s job
control system (e.g., exec, LSF, PBS) to initiate the user’s
job. During the job execution the job manager monitors its
progress and handles job control requests (e.g., suspend, stop,
query) from the user. Since the job manager instance is run
under the user’s local credential, as defined by the user’s
account, the operating system, and local job control system
are able to enforce local policy on the job manager and user
job by the policy tied to that account.

The job manager does no authorization on job startup
because the gatekeeper has already done so. Once the job has
been started, however, the job manager accepts,
authenticates, and authorizes management requests on the
job.

In GT2, the authorization policy on these management
requests is static and simple: the Grid identity of the user
making the request must match the Grid identity of the user
who initiated the job.

4. AKENTI AUTHORIZATION SERVICE

As noted in Section 1, the authorization provided by GT2
is coarse grained. Because of the large user community, the
NFC needed to add fine-grained authorization for job
execution and management. Rather than writing an
authorization function from scratch, the NFC decided to use
the Akenti authorization service [10]. Akenti is an established
authorization service designed to make access decisions for
distributed resources controlled by multiple stakeholders.
Akenti assumes that all the parties involved in authorization
have X.509 certificates that can be used for identification and

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2TUBT006 ePrint cs.DC/0306070

authentication. Authorization policy for a resource is
represented as a set of (possibly) distributed certificates
digitally signed by unrelated stakeholders from different
domains. These policy certificates are independently created
by authorized stakeholders. When an authorization decision
needs to be made, the Akenti policy engine gathers all the
relevant certificates for the user and the resource, verifies
them, and determines the user’s rights with respect to the
resource.

4.1. Authorization Model

The Akenti model consists of resources that are being
accessed via a resource gateway (the AEF) by clients. These
clients connect to the resource gateway using the TLS [3]
handshake protocol, or something equivalent, to present
authenticated X.509 certificates. The stakeholders for the
resources express access constraints on the resources as a set
of signed certificates, a few of which are self-signed and
must be stored on a known secure host (probably the resource
gateway machine), but most of which can be stored remotely.
These certificates express the attributes a user must have in
order to get specific rights to a resource, identify the
stakeholders who are trusted to create use-condition
statements, and determines the attribute authorities who can
attest to a user’s attributes. At the time of the resource access,
the resource gatekeeper (AEF) asks a trusted Akenti server
(ADF) what access the user has to the resource. The Akenti
server finds all the relevant certificates, verifies that each one
is signed by an acceptable issuer, evaluates them, and returns
the allowed access.

Several models for authorization systems have been
proposed. One is the pull model, in which the user presents
only his authenticated identity to the gatekeeper, who finds
(pulls) the policy information for the resource and evaluates
the user’s access. Another model is the push model, in which
the user presents one or more tokens or assertions that grant
the holder specific rights to the resource. In this model, the
gatekeeper must verify that the user has the rights to use the
tokens and then must interpret the rights that have been
presented.

In the application shown in Figure 2, the pull model is used
in order to allow applications to transparently use Akenti
authorization over standard GSI/TLS connections that
transport and verify X.509 certificates. Akenti can also be
used in a push model because it returns its authorization
decision as a signed capability certificate containing the
subject’s distinguished name (DN), public key, the
certification authority (CA) that signed for this name, the
name of the resource, and the subject’s rights. These
capability certificates are short-lived in order to avoid the
problems of revocation.

In GT2, the gatekeeper acts as the resource gateway: it
allows access only to Grid users who appear in the grid-
mapfile. In our current work we make the job manager an
AEF as well, by enabling it to enforce policy about fine-
grained job access.

Resource
Gateway

(AEF)

1 2

4

5

6

3

7

Policy
Certificates

Resources

Akenti
(ADF)

Client

 Figure 2 Akenti authorization model in pull mode

4.2. Akenti Policy Language

Akenti policy is expressed in XML and stored in three
types of signed certificates: policy certificates, use-condition
certificates and Akenti attribute certificates [11]. Policy
certificates specify the sources of authority for the resource.
Use-condition certificates contain the constraints that control
access to a resource. Attribute certificates assign attributes to
users that are needed to satisfy the use constraints.

Use-condition certificates contain a Boolean expression
specifying what attributes a client must have to be allowed a
specific set of actions on the resource. Attributes can be
components of the client’s DN, including the Common Name
(CN), which can be used to grant actions to a single
individual. They can be AKENTI attributes such as role, group
and training level or they can be SYSTEM attributes such as
time of day or load factor on a machine. Thus a constraint
might look like the following:

(DN=/O=DOEGrids/OU=People/CN=Jane Doe) ||
(role=developer && (time>5pm) && (time<8am)) ||
(group=clients && executable=TRANSP)
actions=start

This constraint allows Jane Doe to start any job at any

time, allows clients who have the role of developer to run any
executable between 5 pm and 8 am, and allows members of
the client’s group to run a specific service, TRANSP, at any
time.

The X.509 DN attribute is taken from the client’s X.509
certificate. The AKENTI attributes, role, and group are defined
by an Akenti attribute certificates. Time and executable are
SYSTEM attributes and may need to be evaluated by the AEF.
In this case, Akenti will return the required attribute value
pairs along with the actions that would be allowed if they are
satisfied, as conditional actions.

Multiple use-conditions can apply to the same resource.
Privileges granted by use-conditions are additive with one
major exception. If a use-condition is marked critical, a client

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3TUBT006 ePrint cs.DC/0306070

must satisfy it, or the client will be granted no access,
regardless of any other use-conditions.

Policy certificates are self-signed, are collocated with the
resources to which they apply, and contain only minimal
information (because they are centrally located and may be
administratively difficult to update). They define the basic
trust relationships are used to bootstrap and to provide
closure for the trust chain by specifying the sources of
authority for a resource. The sources of authority are the CAs,
who are trusted to sign X.509 certificates for all the principals
involved in an authorization decision; attribute authorities,
who can issue attribute certificates for user, and the
stakeholders, who are allowed to issue use-condition
certificates for the resource. Whenever a certificate is used,
the Akenti policy engine checks that it has been signed by an
acceptable issuer and that the signature verifies. The CAs are
represented by their X.509 certificates, which provide a
trusted copy of their public keys and information about where
they publish certificates and certificate revocation lists. Each
stakeholder is represented by a DN and the DN of the CA that
issued a certificate for that name, and a list of places,
specified by URLs, where the stakeholder puts the use-
condition certificates issued. A policy certificate may
optionally contain a list of URLs in which to search for
attribute certificates.

Authorization policy is associated with individual or
collections of resources. Hierarchical resources can inherit
policy from parents. Allowing a policy to apply to collections
of resources is necessary to scale to more than a handful of
resources.

5. INTEGRATION OF AKENTI AND JOB
MANAGER

In this section we describe how we integrated the Globus
Toolkit job manager with Akenti.

5.1. Code Integration

While the Globus gatekeeper currently acts as the AEF and
ADF for job submission, we decided to add our callout for
fine-grained access control to the GT2 job manager [9] for
two reasons. First, the job manager is the component that
parses the Resource Specification Language (RSL) [2] of the
job request. RSL consists of attribute value pairs specifying
job parameters such as executable description (name,
location, etc.), and resource requirements (number of CPUs
to be used, maximum allowable memory, etc.). These were
the attributes that we wanted to control. Second, the job
manager decides and enforces access policy for job control.
Requests to terminate, signal or query a job go directly to the
job manager via the job handle URL that is returned on job
creation. In GT2 the job manager allows these actions only if
the requestor has the same Grid id as the job initiator. These
were the other actions we wanted to control.

Specifically, our additions consisted of the following:
• Authorization callout API. We designed a callout API

to integrate an ADF with the job manager. The callout
passes to the ADF module all the information relevant

to access control, such as the credential of the user
requesting a remote job, the credential of the user who
originally started the job, the action to be performed
(such as start or cancel a job), a unique job identifier,
and the job description expressed in RSL. The ADF
responds through the callout API with either success
or an appropriate authorization error. This call is made
whenever an action needs to be authorized, that is,
before instantiating a job and before canceling,
querying, or signaling a running job.

• Policy-based authorization for job management. As
discussed in Section 3, each job management request
other than job start is currently authorized by the job
manager so that only the user that started a job is
allowed to manage it. We modified the authorization
in GRAM to enable Grid users other than the job
initiator to manage the job based on policy with
decisions rendered through the authorization callout
API. In addition to changes to the authorization model,
this modification also required extensions to the
GRAM client to allow one user to signal a job
manager instance owned by another user.

• RSL parameters. We extended RSL to add the
“jobtag” parameter allowing the user to submit a job to
a specific job management group. If the user does not
provide a job tag on start, a default one will be
assigned to the job.

• Error reporting. We further extended the GRAM
protocol to return authorization errors describing
reasons for authorization denial as well as
authorization system failures.

In order to provide for easy integration of third-party
authorization solutions, the job manager allows callouts to be
configurable at run time. Callouts can be configured through
either a configuration file or an API call. Configuration
consists of specifying an abstract callout name, the path to the
dynamic library that implements the callout, and the symbol
for the callout in the library. Callouts are invoked through
runtime loading of dynamic libraries using GNU Libtool’s
dlopen-like portability library. Arguments to the callout are
passed using the C variable argument list facility. The
insertion of callout points into job manager required defining
a GRAM authorization callout type, that is, an abstract
callout type, the exact arguments passed to the callout and a
set of errors the callout may return. These callout points are
configured by parsing a global configuration file.

5.2. Authorization Policy

When the job manager calls Akenti, the access decision is
based on the Akenti authorization policy. Akenti organizes
policy according to the resources that are being controlled.
Hence, the first step in writing policy is to determine the set
of resources. In the case of fine-grained control of Globus
Toolkit job submission, the things that can be controlled are
the right to execute a job on a machine, which binaries may
be executed, RSL parameters such as requested CPU time,

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4TUBT006 ePrint cs.DC/0306070

requested scheduling queue, and the rights to stop resume,
cancel, or query currently executing jobs.

From the viewpoint of the FusionGrid resource provider,
some of these are more important than others and some are
hard to enforce:

• Right to submit any job to machine – already enforced
by gatekeeper

• Right to start a specific binary – important and can be
enforced by the job manager

• Right to limit CPU cycles for a specific job – currently
not important, would need to be enforced by the run
queue manager (PBS)

• Right to restrict a user or group to a total CPU limit
per month – may be important, requires an accounting
system

• Right to choose an execution queue – may be
important for service guarantees

• Need for at least one class of administrative users who
can kill any job – important

• Need for multiple administrative classes that can kill a
restricted set of jobs – possibly useful but requires
users to understand job classes.

From the Akenti policy point of view these resources can
be loosely grouped into machine/site, executables, and jobs.
A major consideration in writing a comprehensible policy is
to have as little of it as possible. Determining the

<?xml version="1.0" encoding="US-ASCII"?>
<AkentiCertificate xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation='http://www-itg.lbl.gov/Akenti/docs/AkentiCertificate.xsd'>
 <SignablePart>
 <Header Type="Policy" SignatureDigestAlg="RSA-MD5" CanonAlg="Ak1CanAlg" Version="2">
 <UID>"rocky.lbl.gov#104b8965#Thu May 03 17:15:30 PDT 2001"</UID>
 <Issuer>
 <UserDN>/O=doesciencegrid.org/OU=People/CN=Mary R. Thompson</UserDN>
 <CADN>/DC=net/DC=es/OU=Certificate Authorities/OU=DOE Science Grid/CN=pki1</CADN>
 </Issuer>
 <ValidityPeriod Begin="010504001529Z" End="050504001529Z"/>
 </Header>
 <PolicyCert>
 <ResourceName>TRANSP</ResourceName>
 <CAInfo>
 <CADN>/DC=net/DC=es/OU=Certificate Authorities/OU=DOE Science Grid/CN=pki1</CADN>
 <X509Certificate>
 MIICvzCCAiigAwIBAgIBETANBgkqhkiG9w0BAQUFADBbMRkwFwYDVQQKExBET0Ug...
 </X509Certificate>
 <IdDirs> <URL>file:/p/fusiongrid/idCerts</URL></IdDirs>
 <CRLDirs> <URL>ldap://ldap.doegrids.org</URL></CRLDirs>
 </CAInfo>
 <UseCondIssuerGroup>
 <Principal>
 <UserDN>/O=doesciencegrid.org/OU=People/CN=Mary R. Thompson/UserDN>
 <CADN>/DC=net/DC=es/OU=Certificate Authorities/OU=DOE Science Grid/CN=pki1</CADN>
 </Principal>
 <Principal>
 <UserDN>/O=doesciencegrid.org/OU=People/CN=Lew Randerson</UserDN>
 <CADN>/DC=net/DC=es/OU=Certificate Authorities/OU=DOE Science Grid/CN=pki></CADN>
 </Principal>
 <URL>file:/p/fusiongrid/certs</URL>
 </UseCondIssuerGroup>
 <AttrDirs>
 <URL>file:/p/fusiongrid/certs</URL>
 </AttrDirs>
 <CacheTime>3600</CacheTime>
 </PolicyCert>
 </SignablePart>
 <Signature>This is a fake signature</Signature>
</AkentiCertificate>

Figure 3 Top-level policy certificate for TRANSP

optimal grouping of resources that can be controlled by a single
policy is essential for a concise policy. Since Akenti resources
and policies can be hierarchical, the obvious top level is the
machine or in the case of a site with several server machines,
the site. Policy written for top levels can be inherited by lower

levels, so any coarse-grained requirements, for example, the
acceptable CAs to issue the client certificates or membership in
a VO can be specified there. In the case of the FusionGrid two
independent sites are running different codes. One of the sites

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5TUBT006 ePrint cs.DC/0306070

has two machines dedicated to running its code: a production
machine and a more development-oriented machine.

The grouping of executables depends on how many different
individual programs are to be run and whether there are obvious
classes of programs that can be controlled by a common policy.
In the FusionGrid each site supports one main production code.
There may also be development versions of the code that should
be accessible to a more limited group of users. In addition,
users need access to a few simple Unix utilities, such as
/bin/date, in order to quickly test that their remote access
configuration is working correctly.

Treating jobs as resources is a bit tricky because they are
dynamically created objects for which we want to write a static
policy. However, it is logical to control jobs based on some
characteristic of the job, rather than by specific job instance.
Running jobs could be identified by their initiator or by the file
that is being executed, or they could be placed into an
administrative category when they are started. The last choice
lets us write policy about who can control jobs in a given
category and gives us the most flexibility over how we want to
control jobs. It did require an addition to the original RSL
parameters to allow a user to specify a job category when the
job was started. The basic Globus Toolkit policy of letting
whoever started a job control it requires continued support

5.3. Policy for the FusionGrid

The policy we designed to control access to the TRANSP
[13] code running at the Princeton Plasma Physics Laboratory
has two levels, with several branches at the lower level. There
is a sitewide level that is named “TRANSP.” Policy at this level
specifies the CAs that will be trusted to issue X.509 certificates,
the stakeholders for the other resources, and the location of the
use-condition and attribute certificates. There is also a
subordinate level that contains separate policies for each class
of executables, for example, the production code, test utilities, a
development version of the code, and policies for each job
category (at the moment we have only one job category). The
name of the executable given as an argument to globus-job-run
needs to be mapped to an Akenti “resource.” We use the
following (abbreviated) mapping file to accomplish this:

/bin/date TRANSP/test
/bin/sleep TRANSP/test
/p/fusiongrid/trpstart TRANSP/production
/p/fusiongrid/trspkill TRANSP/production
/p/fusiongrid/new/trspstart
 TRANPS/development
jobclass /p/fusiongrid/jobpolicy

The complete policy certificate at the top level is shown in
Figure 3. It specifies the trusted CAs and where they publish
certificates and CRLs, <CAInfo>; the stakeholders and where
they publish their use-conditions, <UseCondIssuerGroup>;
directories to be searched for attribute certificates, <AttrDirs>;
and the maximum caching time for any certificates used in an
authorization decision, <CacheTime>. The header of this
certificate, and all Akenti certificates, has the type of the

certificate, a unique id for the certificate, the issuer who signed
the certificate, and a validity period.

Four user groups are granted specific rights: general – used
for middleware testers, clients – physicists who are allowed to
run the production code, developers – who can run
experimental versions of the code, and administrators – who
can control other users’ jobs. Users get the rights of all the
groups of which they are members.

Use conditions are written for each class of executables and
job category. A portion of a use condition that grants users in
the client group to start the production code is shown in Figure
4. Note that the AttributeInfo element includes the authority
that is allowed to assert that a user is in the client group.

<UseConditionCert critical="false" scope="sub-
tree">
 <ResourceName>TRANSP/production</ResourceName>
 <Condition>
 <Constraint>group = clients</Constraint>
 <AttributeInfo type="AKENTI">
 <AttrName>group</AttrName>
 AttrValue>clients</AttrValue>
 <Principal>
 <UserDN>/O=doesciencegrid.org
 /OU=People/CN=Lew Randerson
 </UserDN>
 <CADN>/DC=net/DC=es/OU=Certificate
 Authorities/OU=DOE Science Grid/
 CN=pki1
 </CADN>
 </Principal>
 </AttributeInfo>
 </Constraint>
 </Condition>
 <Rights>start</Rights>
 </UseConditionCert>

Figure 4 Use-condition fragment for production code

Figure 5 shows the portion of an attribute certificate that

asserts a user’s membership in the client group. This certificate
had to have been issued and signed by Lew Randerson for it to
be accepted by the Akenti policy engine. Note that more than
one attribute authority can be specified in a use-condition.

 <AttributeCert>
 <SubjectAndCA>
 <UserDN>/O=doesciencegrid.org/
 OU=People/CN=Mary R. Thompson
 </UserDN>
 <CADN>/DC=net/DC=es/OU=Certificate
 Authorities/OU=DOE Science Grid
 /CN=pki1
 </CADN>
 </SubjectAndCA>
 <AttrName>group</AttrName>
 <AttrValue>Clients</AttrValue>
</AttributeCert>

Figure 5 Attribute certificate fragment

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6TUBT006 ePrint cs.DC/0306070

6. CONCLUSIONS AND FUTURE WORK

The authorization callout from the GRAM job manager to an
Akenti/Globus Toolkit interface module and then to the Akenti
authorization server has allowed the FusionGrid to add fine-
grained control of the compute services that they are providing.
We have experimented with several ways of writing
authorization policy and are currently using a scheme based on
policy for executables and job classes. So far, the ability of
Akenti to support distributed policy created by multiple remote
stakeholders has not been used because the code owner and the
service provider are the same entity. As a result, all the policy is
written by one person and stored in the local file system of the
resource host. In the future, NFC members may want to control
access to data located at several repositories. In this case there
will be two stakeholders for the data, the owner of the
repository and the owner of the data, each of whom may want
to write policy to control the access to the data. The availability
of a GUI to incrementally add to policy by creating a new
attribute certificate as new members join the collaboratory has
been helpful.

A future goal of the NFC is to provide a high priority service
to time critical computations done in support of fusion
experiments. One simple way to accomplish this is to write
access policy that limits access to the compute resources to a
job class that includes only the critical computations. The time
period during which the would apply would correspond to the
working period of the experiment, typically 8 am to 5 pm.
Akenti policy could be written to allow only jobs with the
priority class to be run during the these hours and to specify
which users are allowed to submit jobs in that class.

Acknowledgments

We gratefully acknowledge the contributions of Lew
Randerson and Doug McCune of the Princeton Physics Plasma
Lab in helping to formulate the authorization policy and
installing the software at their site. This work was supported by
Department of Energy contract with the University of
California.DE-AC03-76F00515 and the Mathematical,
Information, and Computational Sciences Division subprogram
of the Office of Advanced Scientific Computing Research,
Office of Science, SciDAC Program, U.S. Department of
Energy, under Contract W-31-109-ENG-38. Technical Report
number LBNL-52976.

References

[1] R. Butler, D. Engert, I. Foster, C. Kesselman,
S.Tuecke, J. Volmer, and V. Welch, “A National-
Scale Authentication Infrastructure,” IEEE
Computer, 33(12):60-66, 2000.

[2] Czajkowski, K., I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke, “A Resource
Management Architecture for Metacomputing
Systems,” in 4th Workshop on Job Scheduling
Strategies for Parallel Processing. 1998 , Springer-
Verlag. pp. 62-82.

[3] T.Dierks and E.Rescorla. “The TLS protpcol,
version 1, IETF RFC 2246, Jan. 1999

[4] A. J. Ferrari, F. Knabe, M. A. Humphrey, S. J.
Chapin, and A. S. Grimshaw, “A Flexible Security
System for Metacomputing Environments,” in High
Performance Computing and Networking Europe
(HPNC Europe 99), 1999

[5] I. Foster, C. Kesselman, and S. Tuecke, “The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” International J. Supercomputer
Applications, 15(3), 2001. http://www.globus.org/

[6] I. Foster and C. Kesselman. “Globus: A
Metacomputing Infrastructure Toolkit”,
International Journal of Supercomputer
Applications, 11 (2). 115-129, 1998

[7] R. Housley, W. Polk, W. Ford, and D. Solo,
“Internet X.509 Public Key Infrastructure Certificate
and CRL Profile,” RFC3380, 2001.
http://www.ietf.org/rfc/rfc3380.txt/

[8] K. Keahey, T. Fredian, Q. Peng, D.P. Schissel, M.
Thompson, I. Foster, M. Greenwald, and D.
McCune, “2001 Computational Grids in Action: The
National Fusion Collaboratory,” Future Generation
Computer System, 2001. http://www.fusiongrid.org

[9] K. Keahey and V. Welch, “Fine-Grain
Authorization for Resource Management in the Grid
Environment,” in Proceedings of Grid2002
Workshop, 2002.

[10] M. Thompson, A. Essiari, and S. Mudumbai,
“Certificate-based Authorization Policy in a PKI
Environment,” ACM Transactions on Information
and System Security , August 2003.

[11] M. Thompson “Akenti Certificate Schema,”
http://ww-itg.lbl.gov/Akenti/docs/
AkentiCertificate.xsd

[12] Tao, L., “Shifting Paradigms with the Application
Service Provider Model”. IEEE Computer. 34(10):
p. 32-39.

[13] TRANSP, http://w3.pppl.gov/transp

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7TUBT006 ePrint cs.DC/0306070

