

The Community Authorization Service: Status and Future
L. Pearlman, C. Kesselman
USC Information Sciences Institute, Marina del Rey, CA

V. Welch, I. Foster, S. Tuecke
Argonne National Laboratory, Argonne, IL

Virtual organizations (VOs) are communities of resource providers and users distributed over multiple policy domains. These VOs often
wish to define and enforce consistent policies in addition to the policies of their underlying domains. This is challenging, not only
because of the problems in distributing the policy to the domains, but also because of the fact that those domains may each have
different capabilities for enforcing the policy. The Community Authorization Service (CAS) solves this problem by allowing resource
providers to delegate some policy authority to the VO while maintaining ultimate control over their resources. In this paper we describe
CAS and our past and current implementations of CAS, and we discuss our plans for CAS-related research.

1. INTRODUCTION

A virtual organization (VO) is a dynamic collection of
resources and users unified by a common goal and
potentially spanning multiple administrative domains [12]
VOs introduce challenging management and policy issues,
resulting from often complex relationships between local
site policies and the goals of the VO with respect to access
control, resource allocation, and so forth. In particular,
authorization solutions are needed that can empower VOs to
set policies concerning how resources assigned to the
“community” are used—without, however, compromising
site policy requirements.

We describe here our implementation of the Community
Authorization Service (CAS), a system that we have
developed as part of a solution to this problem. CAS allows
for a separation of concerns between site policies and VO
policies. Specifically, sites can delegate management of a
subset of their policy space to the VO. CAS provides a fine-
grained mechanism for a VO to manage these delegated
policy spaces, allowing it to express and enforce expressive,
consistent policies across resources spanning multiple
independent policy domains. Both past and present CAS
implementations build on the Globus Toolkit® middleware
for Grid computing [10], thus allowing for easy integration
of CAS with existing Grid deployments.

The rest of this article is as follows. In Section 2, we
describe the scenarios that CAS is designed to support,
review the Globus Toolkit’s authorization systems, and
explain why CAS is needed. In Section 3, we introduce CAS
architecture and concepts. In Section 4, we describe the
current and present CAS implementations and future
implementation plans. In Section 5, we discuss the
relationship of CAS to PERMIS, VOMS, and other related
authorization technologies and how standardization can
enable interoperability among them. In Section 6, we
describe our plans for future CAS-related research.

2. PROBLEM STATEMENT

We first describe the scenarios that CAS was designed to
solve, review the current Globus Toolkit authorization
system, and explain the system limitations that motivated
development of CAS.

2.1. Consistent Distributed Policy

While all the physical organizations in a virtual
organization may in principle agree to allow the VO access
to its resources, each organization will typically retain
ultimate control over the policies that govern access to its
resources. Nevertheless, the VO will often wish to apply
some common policy about how its users access the
resources assigned to the VO. For example, a subset of users
may have read-only access to VO data, while others may
have full access to publish or modify data. Some data may
be sensitive until published and restricted to a very limited
set of VO members.

Since VO resources are located within multiple
organizations, maintaining a consistent policy means having
access control enforced by each of the organizations in a
consistent manner. Achieving this consistency is difficult
because each site potentially has different mechanisms for
policy expression and enforcement and these different
mechanisms may have different abilities in terms of the
granularity of the policy they can express. Using local policy
mechanisms to enforce VO policies would limit those
policies to the least common denominator of the abilities of
the site mechanisms (which can potentially change when
new sites are added to the VO).

Complicating this situation is the fact that the resources
may be dynamic and may also have dynamic policies. For
example, a VO can have a number of datasets as part of its
resources. While these datasets are stored on resources
owned by the organizations that the VO spans, the VO
wishes to apply its own policy regarding access to the
datasets. These datasets may be dynamically created or
copied; for example, a demand for access to a dataset by a
user at a particular location might motivate a replica of the
dataset being automatically created at the location to
improve the user’s access (as described in [1]). These data
replicas should have access control policies identical to the

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint cs.SE/0306082TUBT003

original from they are copied, in order to maintain a
consistent policy in regard to access to the data. This policy
in turn may be dynamic, meaning the policy on the replicas
must mirror it as it changes.

The use of site mechanisms also has the complication that
policy itself must be replicated: a change in the policy
requires an update at multiple sites. The temporarily
unavailability of a site during such an update, can lead to
inconsistencies in the policy across the VO.

2.2. Authorization Middleware

Middleware for VOs has been available for several years.
Most notable is the Globus Toolkit (GT) [10], which is
freely available and widely deployed.

2.2.1. Globus Toolkit Features

The Globus Toolkit normally uses existing local resource

mechanisms for authorization. A user is authenticated and
then mapped to a local identity (e.g., a Unix account) by a
local configuration file (the grid-mapfile). This mapping also
serves as an access control check: if the user is not listed in
the local mapping configuration, access to the resource is
denied.

Once the user is mapped to a local identity, the Globus
Toolkit then relies solely on local policy management and
enforcement mechanisms to constrain the user’s actions to
those allowed by local policy. This approach removes the
fine-grained policy configuration and decision making from
the GT services (e.g., GridFTP, GRAM) and allows the local
operating system to act as a sandbox. Thus, administrators
can use normal policy administration tools to configure
policy. For example, a Globus Toolkit user is normally
mapped to a local Unix account. Standard Unix filesystem
permissions, quotes, group memberships, and so forth are
then used to configure and enforce policy.

Similar techniques could be used in conjunction with
dynamically allocated accounts or virtual machine
technology [9].

2.2.2. Limitations of GT Classic

The classic Globus Toolkit authorization system described
has the advantage of being easy for site administrators to
understand and configure because it uses existing local
policy management and enforcement mechanisms with
which the administrator is presumably already familiar. In
terms of supporting a large VO, however, the GT has several
shortcomings:

• Scalability: each personnel or policy change requires

changing policy at each participating site;
• Lack of expressiveness: native OS methods may not be

expressive enough to support VO policies;
• Consistency : different native OS methods may not

support the same kinds of policies;
• Distribution: in order to maintain a consistent policy

across the VO, each policy change must be propagated

to each site involved. Any failure in propagation will
cause an inconsistency in the policy.

To solve these problems, we undertook the development

of the CAS system, described in the following section.

3. CAS CONCEPTS

We now introduce CAS and describe how it solves the
problems described in Section 2.

3.1. Policy Management

CAS allows a VO to maintain its own set of policies
explicitly and communicate those policies to sites. The sites
then combine their local policies (about what the VO is
allowed to do) with the VO’s policies (about what the
individual user is allowed to do as a VO member) and
enforce this combined policy.

The VO, through administration of the CAS server,
maintains the VO’s portion of this combined policy. This
portion of the policy includes the following:

• The VO’s access control policies regarding its

resources: which rights are granted to which users (e.g.,
which users can read which files);

• The CAS server’s own access control policies, such as
who can delegate rights or maintain groups with the
VO. These policies can be expressed at a fine-grained
level (e.g., a user may be allowed to grant rights on only
certain resources, or add users to only certain groups);

• The list of VO members.

The other part of this combined policy, the resource

provider’s policy regarding the VO, is maintained by the
resource provider using the same native mechanisms used
for non-VO users. For example, a site may create a local
identity representing a VO and add local configuration
mapping users presenting credentials from that VO’s CAS
server to that identity. The site would then use local
mechanisms to set policy on the VO as a whole, for
example, change file ownerships to allow the VO identity
read and write access to a particular subset of the file
system, or set file system quotas limiting the amount of
space that the VO can use. A resource provider may use this
mechanism to maintain policies for several VOs, each
running its own CAS server.

3.2. Policy Enforcement

Resource providers participating in a VO with CAS will
deploy CAS-enabled services (i.e., services modified to
enforce the policy in the CAS credentials) onto resources
they assign to the VO. A user wishing to access those
resources first contacts the VO’s CAS server and requests a
CAS credential. The CAS server replies with a CAS

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint cs.SE/0306082TUBT003

credential that contains a policy statement of that user’s
rights, cryptographically signed by the CAS server.

When making a request to the resource, the user presents
the CAS credential. Upon receiving the CAS credential, a
CAS-enabled service takes several steps to enforce both VO
and local policy:

• Verify the validity of the CAS credentials (e.g.,
signature, time period).

• Enforce the site’s policies regarding the VO, using
essentially the same method as an unmodified server.
However, the identity used when enforcing the site’s
policies is the identity of the signer of the policy
assertion (i.e., the VO’s CAS server), not the identity
of the individual user authenticating.

• Enforce the VO’s policies regarding the user, as
expressed in the signed policy statement in the CAS
credential.

• Optionally, enforce any additional site policies in
regard to the user (for example, a site may keep a
blacklist of end users who are not allowed to perform
any action, regardless of any VO policy).

Access
Granted by
Community

To user

Access
Granted by site
To community

Effective
access

Access granted
By site to user

Figure 1: Effective access control policy in CAS.

Thus, as shown in Figure 1, the set of rights the user is
effectively granted by these steps is the intersection of the
set of rights granted by the resource server to the VO and the
set of rights granted by the VO to the user (optionally
modified by any site policy specific to the user).

4. CAS IMPLEMENTATIONS

We review past and current CAS implementations and
discuss future implementation plans. We start with a review
of Globus Toolkit proxy certificates, a key component of
CAS imple mentations. Next we discuss the initial and
current CAS prototype releases, explaining the differences
between them and the motivations for those changes. We

then discuss the upcoming CAS release in a future release of
version 3 of the Globus Toolkit.

4.1. Proxy Certificate Overview

CAS is designed and implemented to work with the Grid
Security Infrastructure (GSI) [2][13], which provides the
security functionality of the Globus Toolkit. For
authentication, GSI uses X.509 proxy certificates [22] to
provide credentials for users and to allow for delegation and
single sign-on.

Proxy certificates are similar to the standard X.509 end
entity certificates (EECs) [6] from which they are derived.
The primary difference is that users issue proxy certificates
to create a short-term (e.g., one-day) delegation of their
rights to another entity (e.g., a process running on their
behalf) as opposed to EECs, which are issued by certificate
authorities to assign a long-term identity. The short-term
nature of proxy certificate credentials allows them to be
more lightly protected than the credentials associated with
the long-term EEC credentials that are used to create them.
For example, proxy certificate credentials are usually
protected with local filesystem permissions as opposed to
being encrypted. This approach allows their use for single
sign-on and by unattended processes.

EEC

Proxy

Client

Service

(1)

(2)

Proxy
(3)

Figure 2: Proxy certificate creation and delegation. The steps
are explained in the text.

As shown in Figure 2, step 1, the creation of a proxy

certification can be local to a single resource (usually for use
by subsequent clients, to enable single sign-on). As shown in
step 2, the proxy certificate can then be used with GSI to
authenticate to a remote service and establish a secure
connection. Proxy certificates can also be used to issue other
proxy certificates, allowing for a chain of delegations as
shown in step 3, where a proxy certificate is created across
the GSI-secure network channel (to delegate rights to the
service so it can act on the original user’s behalf).

Normally a proxy certificate allows its bearer to assert the
full rights of the bear of the EEC that issued it. This
delegation can be restricted through the use of a policy
embedded in the proxy certification, as we discuss in the
CAS implementation in the following section.

4.2. Initial CAS Prototype

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint cs.SE/0306082TUBT003

Our initial CAS prototype [4], as described in [17], was
released in March 2002. This implementation includes a
CAS server, appropriate administration and user clients, and
a GridFTP server [1] modified to understand and honor CAS
credentials. The implementation uses the pyGlobus toolkit
[16] to facilitate implementation using Python.

This implementation uses restricted proxy certificates, as
described in Section 4.1, issued by the CAS server to the
user. The proxy certificate identifies the user as a member of
the VO (by virtue of the user’s bearing a proxy certificate
issued by the CAS server) and the rights the user possesses
in the VO (through the restrictions in the proxy certificate).
As shown in Figure 3, the effective rights of the user then
become the subset of the rights granted by the resource to
the VO and the VO to the user.

Access
granted by
community

to user
(via CAS policy)

Access
granted by site
to community
(via account)

Effective access

Figure 3: Effective access control policy in initial CAS
prototype.

As described in Section 3.2, resources create an account
for the virtual organization (VO) and grant some set of rights
to the account. Each VO then sets up a CAS server and
configures its policy in that server to express each user's
rights within the VO.

Figure 4 shows the details of CAS alphaR1 use. The steps
are as follows:

CAS
Server

Community
Resource

(1) Logon

(3) Request

(2) Restricted CAS Proxy

Community
Policy

Figure 4: Use of initial CAS prototype. Steps are described
in the text.

1. The user authenticates, using personal proxy
credentials, to the VO's CAS server. The CAS
authenticates the user and establishes that user’s
rights in the VO by using a local policy database.

2. The CAS server then issues to the user a restricted
proxy certificate. This proxy certificate, as shown in
Figure 5, has the identity of the CAS server,
identifying the user as a VO member, and a
restriction policy expressing the rights of the user
within the VO.

3. The user uses the CAS proxy certificate to
authenticate to a resource as a VO member. Based on
that certificate, the resource allows the user to access
the resource using the VO account but constrains the
user’s activities using the restrictions in the proxy
certificate.

After the release of the initial CAS prototype in early

2002, we received useful feedback from both VO
administrators and resource sites. The largest concern raised
by the sites was their inability to identify the user connecting
to them with CAS credentials at a finer level of granularity
than a member of a particular VO (i.e., they could not verify
the actual user identity). A number of these sites have policy
requirements dictated by their funding agencies to identify
users of their computational resources.

We proposed that the CAS server, which authenticates the
user and hence has access to their identity, could encode the
user identity in a non-critical X.509 extension [6] to the
proxy certificate. This solution was also of concern to the
resource providers because it required them to trust the CAS
server as to the identity of the user. This caused them to
place more trust in the CAS server than they were
comfortable with.

This concern led to the redesign of CAS and the release of
the alphaR2 prototype described in the following section.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint cs.SE/0306082TUBT003

Subject: /CN=CAS/CN=Proxy
Issuer: /CN=CAS
Valid from: 3/25/03 13:00
Valid to: 3/25/03 21:00

Restrictions (critical extension):
Only these actions are allowed
by VO policy:

Read gridftp://myhost/mydir/*
Write gridftp://myhost/myfile

{Signature of all the above by
CAS server}

Figure 5: Example of a restricted proxy certificate,
simplified for clarity, issued by initial CAS prototype. The
certificate identifies the user as a member of the VO and the
restrictions enumerate the user's rights within the VO.

4.3. Second CAS Prototype

Building on the first CAS prototype and the community
feedback it elicited, we redesigned CAS and, in September
2002, released the alphaR2 prototype [5]. The major feature
added in this release was to enable resources to identify a
user operating with CAS credentials to the same degree of
certainty as they could a user using standard Globus Toolkit
proxy credentials. That is, a resource could derive not only
the user's VO membership but also the user’s identity. The
contents of this release—a CAS server, clients and a CAS-
enabled GridFTP server—are otherwise functionally
identical to the first prototype.

To implement this feature, we changed the mo del from the
use of a restricted proxy certificate issued by the CAS server
to a model that combines a proxy certificate issued by the
user with a signed policy assertion issued by the CAS server.
The resulting credential is shown in Figure 6.

The policy assertions issued by the CAS server includes a
set of access rights along with the user’s identity. This
assertion allows a resource to verify the user’s VO
membership, by the fact the assertion has the user’s identity
in it, and the user’s rights within the VO as listed in the
assertion. The assertion also includes a validity period and
signature allowing resources to verify the validity of the
assertion.

This separation of CAS policy assertion from user proxy
credentials allows resources accepting these credentials to
identify the user involved in a request as if they were using
normal GSI credentials. This strategy in turn allows a site to
use normal mechanisms for auditing and to apply an
additional level of policy enforcement based on the user’s
identity. The applied policy, as shown in Figure 3, becomes
the intersection of the rights granted to the community by

the site, the rights granted to the user by the community and
any restrictions placed on the user by the site.

Authorization Assertion
Subject: /CN=Joe User
Issuer: /CN=CAS
Valid from: 3/25/03 13:00
Valid to: 3/25/03 21:00

Rights:
These actions are allowed:

Read gridftp://myhost /mydir/*
Write gridftp://myhost/myfile

{Signature of assertion by CAS
server}

Subject: /CN=Joe User/CN=Proxy
Issuer: /CN=Joe User
Valid from: 3/25/03 12:00
Valid to: 3/25/03 23:00

{Signature of all the above by
User}

Figure 6: An example CAS alphaR2 credential, simplified
for clarity. A user proxy is combined with a policy assertion
issued by the CAS server.

Figure 7 shows the details of second CAS prototype

usage. The steps in the figure are as follows:

1. The user authenticates, using personal proxy
credentials, to the CAS server serving the user’s virtual
organization (VO). The CAS server established the
user's identity and rights in the VO using a local policy
database.

2. The CAS server issues the user a signed policy assertion
containing the users identity and rights in the VO. The
CAS client generates a new proxy certificate for the
user and embeds the CAS policy assertion in the proxy
certificate as a noncritical X.509 extension [6]. This
embedding of the assertion in the proxy is not necessary
from a security perspective but instead allows any
application that can use a normal GS I proxy to be able
to use the proxy with CAS assertion embedded in it, as
it looks like a standard proxy certificate to existing APIs
and protocols.

3. The user uses the proxy certificate with the embedded
CAS assertion to authenticate to a resource. The
resource authenticates the user using normal GSI
authentication, allowing it to determine the user's
identity and apply local policy as desired. It then parses
the policy assertion in the proxy certificate and, based
on the assertion, allows the user to access the resource
using the VO account but constrains the user’s activities
using the rights in the assertion.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint cs.SE/0306082TUBT003

CAS
Server

Community
Resource

(1) Logon

(3) Request

(2) Authorization assertion

Community
Policy

User proxy with
CAS assertion

Figure 7: Second CAS prototype usage. Steps are described
in the text.

4.4. Summer 2003 Release

Building from the earlier prototypes described in the
preceding sections, we are planning on releasing a new
version of CAS built on version 3 of the Globus Toolkit
(GT3) [15]. This version of CAS will be conceptually
similar to the second prototype described in the preceding
section but will have a number of significant differences:

• Implements an OGSA Service. It will reside in a GT3

hosting environment and implement an Open Grid
Service Architecture [11] service. Protocols to access
CAS will use common Web services methods such as
SOAP [20].

• Has a Java code base. To facilitate its integration
with GT3, the CAS will be written in Java.

• Uses SAML for assertion format. The new version of
CAS will use the security assertion markup language
(SAML) [19] as the format for the policy assertions
issued by the CAS server. This will allow for easy
integration with Web services and OGSA tooling.

Our intent is to release this new version of CAS with a

version of the Globus Toolkit in late summer 2003. This
release will include many functional elements present in the
earlier prototypes, namely, a CAS server, clients for users
and administrators, and a CAS-aware GridFTP server. It will
also include a Java client library and a C library to allow for
CAS-enabling services (i.e., allowing them to accept and
properly enforce CAS-issued assertions).

5. RELATIONSHIP TO OTHER WORK

We compare CAS to other authorization services and
explain how we see standardization allowing these services
to interoperate.

5.1. VOMS

The Virtual Organization Management Service (VOMS)
[23] and CAS are similar architecturally in that both issue
policy assertions to a user that the user then presents to a
resource for the purpose of obtaining VO -issued rights. The
primary difference between the two systems is the level of
granularity at which they operate.

As shown in Figure 8, VOMS assertions contain a list of
role or group memberships held by the user. The user
presents this assertion to a resource, which then determines
that user’s rights based on their memberships and local
policies about those memberships. In effect the policy about
what memberships a user has is centralized in the VOMS
server, but the policy regarding exactly what rights those
memberships grant is distributed among the sites.

CAS assertions provide the rights directly and do not need
interpretation by the resource. As discussed in Section 2, in
situations where policies are changing dynamically, we
believe this complete centralization of policy can achieve
better consistency.

However, while CAS was designed primarily to do fine-
grained policies, our research has shown it is also capable of
asserting coarser grained group memberships [3].

CAS VOMS

Group
memberships

Group
rights

Community
Resource

Group
memberships

Group
rights

Rights Groups

Figure 8: Difference between CAS and VOMS models.
VOMS issues group memberships, which are mapped to
rights by a resource. CAS issues rights directly.

5.2. Akenti and PERMIS

Akenti [21] and PERMIS [7], while having differences in
implementation and features, are architecturally similar in
that they provide a resource with an authorization decision
in regards to a request. Both follow the basic model:

1. A resource authenticates a requestor and validates their

identity as well as possibly some additional attributes.
2. The resource receives and parses the user's request.
3. The resource then passes the identity, attributes, and

request to Akenti or PERMIS and requests an
authorization decision (i.e., whether is should service or
reject the request).

4. Akenti or PERMIS then returns a decision to the
resource and which enforces it.

While our CAS implementations provide simple
authorization decision functionality, they are limited to

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6 ePrint cs.SE/0306082TUBT003

supporting CAS policy assertions and does not have as rich a
feature set as either Akenti or PERMIS. It is possible that
either of these systems, with some modifications, could be
used to provide resource-side functionality for CAS (i.e.,
parse the CAS assertion and use it to authorize the user's
request.)

5.3. Standardization of Assertions

We see potential for allowing interoperability between
CAS and the other authorization systems mentioned in this
section by standardizing on a format for authorization
assertions. Today, both CAS and VOMS each issue
assertions in a different and nonstandard format that requires
custom code on the resource side to interpret for
authorization.

By standardizing the format for the assertions issued by
services such as CAS and VOMS, we can enable
authorization decision services to be able to parse and use
these assertions in their decision-making as shown in Figure
9. The steps are as follows:

1. An assertion service like CAS or VOMS would issue an

assertion to a user regarding either that user's attributes
(e.g., group me mberships) or rights.

2. The user would present this assertion to a resource when
making a request (probably along with authenticating
their identity.)

3. The resource would then present the request, identity
and assertion to an authorization decision service such
as Akenti or PERMIS.

4. The authorization decision service would parse the
assertion and use it, along with local policy, to render a
decision that it returns to the resource.

X.509 attribute certificates [6] are one possibility for a

standard assertion format. Given the influence of Web
services in emerging Grid standards [11], however, we
believe a standard more in line with current Web services
efforts should be considered. We are experimenting with the
security assertions markup language (SAML) [19], a
standard for formatting authorization and attribute
assertions, as a format for our next release of CAS as
described in Section 4.4. We also plan on working in the
Global Grid Forum [14] in order to standardize the use of
SAML for supporting authorization in VOs.

VO
policy

Local
policy

Community
resourceCAS or

VOMS

Akenti or
PERMIS

(1)
(2)

(3) (4)

Figure 9: A standard assertion format would allow
authorization systems such as CAS, VOMS, Akenti and
PERMIS to interoperate. Steps are described in the text.

6. FUTURE WORK

We plan future research activities in regard to CAS.

6.1. Caching Server

The current CAS server implementation maintains a
single, centralized server for a VO. To provide for
availability even if the CAS server is unavailable, we will
develop a caching server to act as a lightweight partial
mirror of a CAS server. This caching server will accept
requests to cache certain types of signed policy statements
(for example, all rights granted to a user) and then
periodically request these signed statements from the VO’s
CAS server. The caching server will accept CAS-protocol
requests from users by returning these cached signed policy
statements.

6.2. Resource-Server-Pull Support

In addition to current model in which the user pushes the
policy assertions to the resource server, we will investigate a
model in which the resource server, rather than the client,
contacts the CAS server for policy assertions.. This model
could be combined with the caching server, described in the
preceding section, for performance and reliability: the
caching server could periodically contact the VO’s CAS
server for a signed policy assertion including all rights
granted on a resource, and the resource server could query
that caching server.

6.3. Local Authorization Server

We are investigating the possibility of implementing a
local authorization server that would accept authorization
queries from request servers, apply all applicable local and
community policies, and return a yes or no answer. This
authorization server would need to be highly trusted by the
resource server and highly available (sites would probably

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7 ePrint cs.SE/0306082TUBT003

run a local authorization server on each resource server
host.)

This service could potentially take CAS credentials,
forwarded by the resource, and use their credentials in
making its decision, or it could contact the CAS server itself
using the pull model described in the preceding section.

Such a server could be implemented by using Akenti or
PERMIS, as described in Section 5.

Acknowledgments

We thank Rachana Ananthakrishnan, Doug Engert, Sam
Meder, Chris Nebergall, and Shubi Raghunathan for their
contributions to the Community Authorization Serv ice.

We gratefully acknowledge feedback on the CAS
implementations from members of the PPDG-SiteAAA and
DOE Science Grid engineering groups and Keith Jackson for
the pyGlobus [16] system used in our prototypes.

This work was supported in part by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, SciDAC Program, U.S.
Department of Energy, under Contract W-31-109-ENG-38.
Initial funding for CAS was provided by the “Earth Systems
Grid” project.

The Globus Toolkit is a trademark owned by the
University of Chicago.

References

[1] W. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak,
I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnal, and S. Tuecke. Data Management and
Transfer in High Performance Computational Grid
Environments. Parallel Computing Journal 28 (5),
May 2002, pp. 749-771.

[2] Butler, R., Engert, D., Foster, I., Kesselman, C.,
Tuecke, S., Volmer, J. and Welch, V. A National-
Scale Authentication Infrastructure. IEEE Computer,
33 (12), 2000, pp. 60-66.

[3] S. Cannon, S.Chan, D.Olson, C. Tull, V. Welch, L.
Pearlman. Usering CAS to Manage Role-ased VO
Sub-Groups. To appear CHEP 03, June 2003.

[4] CAS Alpha Release Web site,
http://www.globus.org/Security/cas/alpha/, March
2002.

[5] CAS AlpahR2 Web site,
http://www.globus.org/Security/cas/alpha-r2/,
September 2002.

[6] CCITT Recommendation X.509: The Directory –
Authentication Framework. 1988.

[7] D. W. Chadwick and A. Otenko. The PERMIS X.509
Role Based Privilege Management Infrastructure. 7th
ACM Symposium on Access Control Models and
Technologies, 2002.

[8] S. Farrell, and R. Housley. An Internet Attribute
Certificate Profile for Authorization, RFC 3281,
IETF, April 2002.

[9] R. Figueiredo, P. Dinda, and J. A. Fortes. Case for
Grid Computing on Virtual Machines. 23rd
International Conference on Distributed Computing
Systems, 2003.

[10] I. Foster and C. Kesselman. Globus: A
Metacomputing Infrastructure Toolkit. International
Journal of Supercomputer Applications, 11 (2). 115-
129. 1998

[11] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration,
Globus Project, 2002.

[12] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy
of the Grid: Enabling Scalable Virtual Organizations.
International Journal of High Performance
Computing Application, 15 (3), 2001, pp. 200-222.

[13] I. Foster, C. Kesselman, G. Tsudik,. and S. Tuecke. A
Security Architecture for Computational Grids. ACM
Conference on Computers and Security , 1998, pp. 83-
91.

[14] The Global Grid Forum, www.ggf.org, May 2003.
[15] The Globus Toolkit 3.0 Alpha Release, 2003

http://www.globus.org/ogsa/releases/alpha/index.html
[16] Jackson, K. pyGlobus: a Python Interface to the

Globus Toolkit. Concurrency and Computation:
Practice and Experience, 14 (13-15), 2002, pp. 1075-
1084.

[17] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and
S. Tuecke. A Community Authorization Service for
Group Collaboration. IEEE 3rd International
Workshop on Policies for Distributed Systems and
Networks, 2002.

[18] D. Reed, I. Pratt, P. Menage, S. Early, and N.
Stratford. Xenoservers: Accountable Execution of
Untrusted Programs. 7th Workshop on Hot Topics in
Operating Systems, Rio Rico, AZ, IEEE Computer
Society Press, 1999.

[19] Security Assertion Markup Language (SAML) 1.0
Specification, OASIS, November 2002.

[20] Simple Object Access Protocol (SOAP) 1.1, W3C,
2000.

[21] M. Thompson, W. Johnston, S. Mudumbai,.G. Hoo,
K. Jackson,. and A. Essiari. Certificate-based Access
Control for Widely Distributed Resources. 8th Usenix
Security Symposium, 1999.

[22] S. Tuecke, D. Engert., I. Foster, V. Welch, M.
Thompson, L. Pearlman, and C. Kesselman. Internet
X.509 Public Key Infrastructure Proxy Certificate
Profile, IETF, 2003.

[23] VOMS Architecture v1.1, http://grid-
auth.infn.it/docs/VOMS-v1_1.pdf, May 2002.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

8 ePrint cs.SE/0306082TUBT003

The submitted manuscript has been created by
the University of Chicago as Operator of
Argonne National Laboratory ("Argonne") under
Contract No. W-31-109-ENG-38 with the U.S
Department of Energy. The U.S. Government
retains for itself, and others acting on its
behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce,
prepare derivative works, distribute copies to
the public, and perform publicly and display
publicly, by or on behalf of the Government.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

9 ePrint cs.SE/0306082TUBT003

