

AliEn Resource Brokers
Pablo Saiz
University of the West of England, Frenchay Campus Coldharbour Lane, Bristol BS16 1QY, U.K.
CERN, European Organization for Nuclear Research, 1211 Geneve 23, Switzerland

Predrag Buncic
CERN, European Organization for Nuclear Research, 1211 Geneve 23, Switzerland

Institut für Kernphysik, August-Euler-Strasse 6, 60486 Frankfurt am Main, Germany

Andreas J. Peters
CERN, European Organization for Nuclear Research, 1211 Geneve 23, Switzerland

for the ALICE Collaboration

AliEn (ALICE Environment) is a lightweight GRID framework developed by the Alice Collaboration. When the experiment starts
running, it will collect data at a rate of approximately 2 PB per year, producing O(10

9
) files per year. All these files, including all

simulated events generated during the preparation phase of the experiment, must be accounted and reliably tracked in the GRID
environment. The backbone of AliEn is a distributed file catalogue, which associates universal logical file name to physical file names
for each dataset and provides transparent access to datasets independently of physical location. The file replication and transport is
carried out under the control of the File Transport Broker. In addition, the file catalogue maintains information about every job running
in the system. The jobs are distributed by the Job Resource Broker that is implemented using a simplified pull (as opposed to traditional
push) architecture. This paper describes the Job and File Transport Resource Brokers and shows that a similar architecture can be
applied to solve both problems.

1. INTRODUCTION

AliEn [1] is a lightweight GRID implementation.
Although originally designed for the ALICE [2] experiment,
AliEn is being used by several virtual organizations. These
organizations include high-energy experiments like ALICE,
NA48 and NA49, and medical projects like MammoGrid [3]
and GPCALMA [4].

The first component that AliEn provides is a file
catalogue. The Catalogue has an interface similar to a UNIX
file system, and maps logical file names (LFN) into physical
file names (PFN). Files can be replicated in several
locations, and the replications are done using a transfer
broker.

 AliEn allows the execution of jobs in the system. AliEn
can be considered as a global queue system, where jobs can
be executed in distributed sites in a transparent way for the
end user. There is a service, called the job broker that
assigns jobs to the sites where they can be executed.

This paper will explain the architecture of the AliEn
resource brokers. First, an introduction to the AliEn services
will be given. After that, the next two chapters will describe
two of the main tasks that can be scheduled in AliEn: job
execution and file replication. Next, the scheduling and
execution of both tasks will be compared, given its
similarities and differences. It will be followed by a more in
depth discussion of the core service of the two models: the
resource broker. Finally, some ideas for future work and
conclusion will be exposed.

2. ALIEN SERVICES
AliEn components are web services, and they talk to each

other using SOAP (Simple Object Access Protocol) [5]. All
of the AliEn services can be seen in figure 1.

Figure 1: AliEn Services

Some of these services are unique for each virtual
organisation, therefore providing a single configuration point
for the management. For instance, there is only one
‘Authentication’ Server.

This architecture implies that there is a single point for
each resource management. There are three services for each
resource: a manager that keeps the status of all the tasks; a
broker that assigns tasks to resources; and an optimizer,
which supervises the list of waiting tasks.

3. ALIEN JOB EXECUTION MODEL

The AliEn job execution model is based on a central
server per virtual organization, which keeps track of all the
jobs that have to be executed in the system. An overview can
be seen in figure 2.

Figure 2. Computing model

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint cs.DC/0306068TUAP002

3.1. Task: Job execution

The jobs are stored as JDL (Job Description Language)
scripts. The JDL of a job specifies:

• Name of the executable that has to be run.
• Arguments to pass to the executable.
• Requirements that the worker node has to fulfill.
• Input data.
• Output data.
• Software packages.

The only field that is compulsory for the user is the name
of the executable. The AliEn job manager will fill the other
fields (if necessary) when a job is submitted to the system. It
is also up to the job manager to convert the specifications of
the user into the requirements of the job. For instance, if
there is any input data, the job manager will add to the
requirements a constraint specifying that the worker node
has to be near the storage element that keeps the input data.

 The jobs can also be prioritized. Usually, user jobs have a
high priority, whereas production jobs have a lower priority
and they will be executed only when there are no user jobs
in the system.

3.2. Resource: CE

The job execution in AliEn is usually distributed over
several sites. In the case of ALICE, there are more than
thirty-five sites distributed over four continents. Each of
these sites has at least one service called ClusterMonitor.
The ClusterMonitor is used for two main reasons: first, all
the connections from the site to the central services (job
Manager and broker), are done through the ClusterMonitor,
therefore having only one connection from each site, instead
of one connection per client; furthermore, the
ClusterMonitor has one or more CE (Computing Element),
and it can start or stop them whenever it receives a signal.

The CE is the resource in charge of the execution of jobs.
A CE is usually associated with a batch queue, and therefore
can send the jobs to the worker nodes controlled by the
queue. AliEn has interfaces to LSF, PBS, DQS, CONDOR
and SGE. However, a CE could be associated with a single
computer, in which case the jobs will be just executed in the
background. A CE is defined also with a JDL, that specifies:

• Name of CE
• Hostname
• Grid Partitions to which the CE belongs.
• Storage Elements (SE) near the CE
• Software packages installed in the worker nodes.

The CE asks the Broker for jobs to execute, sending its
JDL. The Broker will then try to match the JDL of the CE
with the JDL of the jobs. As soon as it finds a match, it will
send the job’s JDL to the CE. If there are no matches, the CE
will sleep for a while and ask again.

If the CE gets a job’s JDL, it will send it to the batch
queue, where the job will start running. The first thing that
the job will do is to create a new service, called
ProcessMonitor. This new web service allows the CE (and
the rest of the AliEn services through the CE) to interact

with the job while it is running. For example, the
ProcessMonitor can send the output of the job while it is still
running. The scenario of a job execution can be seen in
figure 3.

CE ClusterMonitor BrokerProcessMonitor Manager

Central ServicesSite A

Request a job

tim
e

Forward CE request

Find job that
matches CE JDL

Send JOB JDL
Send JOB JDL

Send job to the
batch system

Job starts
execution

Job is RUNNING

Job is QUEUED

Job is QUEUED

Job finishes
execution

Job is RUNNING

Job is RUNNING

Job is QUEUED

Job is ASSIGNED

Job is DONE

Job is DONE

Job is DONE

Figure 3. Job execution

A CE could be associated with another virtual
organization or even with another GRID implementation.
For instance, there is an interface between AliEn and EDG
[6] in which AliEn sees the whole EDG as one CE.

3.3. Optimizer

A job optimizer checks the requirements of all the jobs
waiting to be executed. The optimizer can change those
requirements, therefore making it easier for the jobs to be
picked up by a CE. For example, the optimizer checks if the
input data has been replicated in any other SE, and modifies
the constraints about the close SE accordingly. At the
moment, the optimizer also suggests replication of data. In
future versions, the optimizer will also suggest the
installation of software packages.

3.4. Status flow

The different status that a job goes through when it is
submitted to the system is explained in figure 4.

When a job is submitted to AliEn, its status is WAITING.
A CE will pick it up and the job will be ASSIGNED, and
then QUEUED when it is submitted to the local batch
system. The job will start to execute on the worker node
(RUNNING), and finally it will be DONE when the job
finishes.

In case of failure in each of the different steps, AliEn has
different job status accordingly.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint cs.DC/0306068TUAP002

New job
submitted to
the system

WAITING

Submitting
works

QUEUED
YES

DONE

YES

Broker
assigns to

CE
ASSIGNEDYESERROR_A NO

CE has a
batch

system

NO

YESERROR_S NO

Job
executed

YES

ERROR_E NO

DONE

Job needs
validation

NO

YES

Validation
confirms
results

VALIDATEDYESFAILED NO

RUNNING
Job starts

execution in
24 hours

EXPIRED NO

Figure 4. Job Status

Jobs can ask to be validated. The validation is a process

that depends on the command that was executed. Usually,
the validation parses the output of the job, checking there
were no errors during the execution, and checks that the
output files were produced. When a job is DONE and if the
job has to be validated, a new process for the validation will
start. Then, the status of the job will be VALIDATED if it
passes the validation procedure, or FAILED if it does not.

4. ALIEN TRANSFER MODEL
The main component of the transfer model is, like in the

case of the job execution model, a database with all the
transfers that have to be done. The Transfer Manager is the
web service responsible for inserting transfers in the system,
changing their status and measuring the time each transfer
spent in each state. The transfer model can be seen in figure
5.

Figure 5. Transfer model

4.1. Task: File transfer

Transfers are specified using JDL syntax, with the
following fields:

• LFN of the file to be replicated.
• SE where the file has to be replicated
• Size of the file

• Type of replication (cache, mirror or masterCopy).
• SEs that currently have the file
• Requirements of the transfer

Transfers have a priority as well. When a user requests a
transfer, she has to specify the LFN, the destination SE and
the type of transfer that she wants. There are three types:
cache (the transferred file will not be registered in the
catalogue); mirror (the new PFN will be inserted in the
catalogue, and any user from the same site will get this new
PFN instead of the original) and masterCopy (the PFN will
be registered as the master PFN, and the previous PFN will
be mirrors).

The transfer optimizer takes all the new requested
transfers, and specifies the PFN and SE that currently have
that LFN.

4.2. Resource: FTD

Each site runs at least one File Transfer Daemon (FTD).
FTDs have a description in JDL format that specify:

• Name of the FTD
• SE close to the FTD.
• Free space in the cache.

Each FTD sends its JDL to the Transfer Broker, and the
Broker tries to match it against the list of transfers that have
to be done. If there is an action that the FTD could do, the
Broker sends a JDL with the description of what the FTD is
supposed to do. If there was no action, the FTD will sleep
for a while and request another transfer when it wakes up.
Figure 6 shows an example of a file transfer from site A to
site B.

BrokerFTD Manager

Central ServicesSite A

Request a transfer

tim
e

Find transfer that
matches FTD JDL

Send transfer JDL

Make local
copy of the file

Transfer is LOCAL COPY

Transfer is ASSIGNED

Site B
FTD

Request Transfer

No transfer
matches FTD JDL

Nothing to do

FTD sleeps for
a while

Request Transfer

Find transfer that
matches FTD JDL

Send transfer JDL

Transfer is TRANSFERING

Transferring
the file

Transfer is CLEANING

Figure 6. File transfer

At the moment, transfers are done using bbftp, a transfer

software that implements its own transfer protocol which is
optimized for large files [8]. However, the method to do the

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint cs.DC/0306068TUAP002

transfer is also specified in the JDL, therefore making it easy
to try different transport protocols, or even to have different
protocols depending on the target and destination of the
transfer.

Like with the computing model, the transfer model makes
possible to interface other grid implementation. In the
AliEn-EDG interface [6], all the EDG is seen as one SE in
AliEn.

4.3. Optimizer

The transfer optimizer has only two functions: checking
for new transfers, and try to limit the number of transfer
JDLs that have to be compared for an FTD.

When a transfer is scheduled, it is up to the optimizer to
specify the size, current locations of the LFN and
requirements.

The second function of the optimizer is to try to minimize
the job of the broker. Quite often, an action needed by a
transfer, can be done only by one resource. For instance, if
we want to replicate a file in site A, an FTD of site A has to
perform this action, and trying to match the JDL of the
transfer with the JDL of an FTD of another site will be
wasting the time of the broker.

4.4. Status flow

A transfer has to be made in several steps: first, the source
FTD has to bring a copy from the local mass storage system
into a scratch directory (this first step is only necessary in
mass storage systems where files cannot be directly accessed
by the transport mechanism); then the remote FTD can fetch
the file and put it into its own storage; finally, the source
FTD deletes the scratch copy of the file.

When a transfer is scheduled in the system, it goes
through the status shown in figure 7.

New transfer
submitted to
the system

INSERTING WAITING
Optimizer checks

source SE

ASSIGNED

Broker gives transfer
to source FTD

Source FTD
makes local

copy

LOCAL COPY
YES

FAILED NO

Transfer
works

CLEANING
YES

NO

DONE

Broker gives transfer
to source FTD

TRANSFERING

Broker gives transfer
to destination FTD

Figure 7. Transfer status

5. COMPARISION OF MODELS

Both the job execution and transfer models have the same
structure: three central services (manager, broker and
optimizer) that take care of all the tasks that have to be done,
and distributed clients associated with the resources that pull
the tasks that they can perform. The definition of tasks and
resources is done with JDL syntax.

From the three central services, two of them do not need
any information about the tasks that they are dealing with,
and they could be identical for both models. The managers
insert tasks in the list, change the status of the tasks, and
measure how much time each task spends in each status. The
brokers only care about matching the requirements of the
resource with the requirements of a task. Therefore, these
two services have the same design in both models.

However, the optimi zers do differ for each model. Both
optimizers have the same goals: to alter the requirements of
the tasks so that more resources can perform them and to
reduce the work necessary to find matches. But the
optimizers achieve their goals in different ways.

The job optimizer could use the following strategies:
• Splitting jobs, so that each part can be submitted to

different CE
• Replicating data, so that the jobs can be easily

executed.
• Requesting the installation of software packages in

CE.
On the other hand, the transfer optimizer has the following

options:
• Grouping transfers of small files with the same source

and destination to do them in one bulk.
• Redirecting the transfer routes, for instance instead of

copying files directly from A to B, copy them from A
to C and then from C to B.

6. BROKERS

The core service of both the job execution and transfer
models is the broker. Both brokers have exactly the same
function: receive a resource JDL, and check it against all the
tasks JDL that are scheduled in the system. The brokers have
the tasks ordered by priority. If there is a match between the
resource and a task, the broker will send the description of
the task to the resource. Otherwise, the resource sleeps for a
while and tries again later. The mechanism can be seen in
figure 8.

In order to do the matching, the brokers use the Condor
Classads [7].

The pull architecture used in AliEn is simpler to
implement than the push that it is being used in other grid
systems. In a push architecture, the broker has to know the
status of all the elements of the grid at all moments, so that it
can decide which is the optimal resource to use for a task.
Keeping the status of the whole grid is not a trivial
operation. The grid is supposed to be flexible, with new
elements appearing, and possible errors in the
communication preventing resources from contacting the

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint cs.DC/0306068TUAP002

broker. In a pull architecture, if a resource goes down, the
grid can go on without it. A failure in one component does
not bring down the whole system.

JDLs
MATCH

YES NO

Get next
task

BROKER
YES

Send task to
resource

NO

No tasks
available for
this resource

Resource is free

Send resource
JDL to the broker

Resource
performs the task

Resource sleeps
for a while

Figure 8. Resource broker

The pull architecture has proven to be stable in the more

than one hundred thousand jobs that have already been
executed in AliEn. Broker improvements

Since the brokers are a fundamental part of the system, a
great effort has been dedicated to making them robust.

The first improvement was to make the services
multithreaded. During initialization, the Broker pre forks
five instances of itself. Those instances will then reply to the
calls from the services. The main problem with this schema
was the concurrency. If there are several requests at the same
time, maybe different threads will give the same task to
different resources. This problem was solved locking the
tables. Once a possible match has been found, the broker
locks the table, checks that the task is still available, and if it
is, it hands it to the resource. Finally, the broker unlocks the
table.

A second improvement was done regarding the number of
JDLs that the broker has to match against. As mentioned
before, sometimes a task has to be performed by a resource
in a specific site, and the task will never match a resource
from another site. This was done adding a new column to the
table of tasks. In cases when an action could only be
executed by one site, this column will have the name of the
site. When the broker receives a resource’s JDL, it will only
match it against tasks of the same site or tasks that do not
specify site at all.

7. CONCLUSIONS

AliEn is a grid implementation that offers a distributed file
catalogue and a global queue system.

The two most important tasks that can be performed in
AliEn are job execution and file transfer. For each task, there
is a model that fulfils it. The models are based on three
central services (manager, broker and optimizer) that control
the list of tasks, and on distributed services associated with
resources. The distributed services ask the central broker for
tasks to do, thus using a pull mechanism rather than the
push.

Both the computing and transfer models in AliEn are very
similar in design and implementation. The pull schema used
in them proved to be an easily expandable and fault tolerant
system. Several productions have already been executed,
therefore proving the feasibility of the system.

The core service of both models is the broker, which
assigns the tasks to the resources. The broker in a pull
environment is rather simple to create, since it does not need
to know the status of the grid. It does not try to find the best
resource for each task, but the highest priority task that a
free resource can perform.

References

[1] P. Saiz, L. Aphecetche, P. Buncic, R. Piskac, J. -E.
Revsbech and V. Sego, AliEn––ALICE environment
on the GRID, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated
Equipment, Volume 502, Issues 2-3 , 21 April 2003,
Pages 437-440

[2] “ALICE Technical Proposal for A Large Ion Collider
Experiment at the CERN LHC”, CERN/LHCC/95-71,
15 December 1995.

[3] R, McClatchey on behalf of the MAMMOGRID
Consortium, The MammoGrid Project Grids
Architecture, these proceedings, MOAT005

[4] P. Cerello, S. Cheram, E. Lopez Torres for the
GPCALMA Project and the ALICE Collaboration,
Use of HEP software for medical applications, there
proceedings, MOCT007

[5] SOAP Lite, http://www.soaplite.com
[6] S.Bagnasco, R.Barbera, P.Buncic, F.Carminati,

P.Cerello, P.Saiz on behalf of the ALICE
Collaboration, AliEn - EDG interoperability in
ALICE, these proceedings, TUCP005

[7] Condor Classified Advertisements,
http://www.cs.wisc.edu/condor/classad

[8] BBFTP, http://doc.in2p3.fr/bbftp/

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint cs.DC/0306068TUAP002

