

The Use of HepRep in GLAST
J. Perl
SLAC, Stanford, CA 94025, USA

R. Giannitrapani, M. Frailis
Dipartimento di Fisica, Universita degli Studi di Udine - Italy

HepRep is a generic, hierarchical format for description of graphics representables that can be augmented by physics information
and relational properties. It was developed for high energy physics event display applications and is especially suited to
client/server or component frameworks. The GLAST experiment, an international effort led by NASA for a gamma-ray telescope
to launch in 2006, chose HepRep to provide a flexible, extensible and maintainable framework for their event display without tying
their users to any one graphics application. To support HepRep in their GUADI infrastructure, GLAST developed a HepRep filler
and builder architecture. The architecture hides the details of XML and CORBA in a set of base and helper classes allowing
physics experts to focus on what data they want to represent. GLAST has two GAUDI services: HepRepSvc, which registers
HepRep fillers in a global registry and allows the HepRep to be exported to XML, and CorbaSvc, which allows the HepRep to be
published through a CORBA interface and which allows the client application to feed commands back to GAUDI (such as start
next event, or run some GAUDI algorithm). GLAST 's HepRep solution gives users a choice of client applications, WIRED
(written in Java) or FRED (written in C++ and Ruby), and leaves them free to move to any future HepRep-compliant event display.

1. INTRODUCTION

HepRep is a generic, hierarchical format for description
of graphics representables that can be augmented by
physics information and relational properties. It was
developed for high energy physics event display
applications and is especially suited to client/server or
component frameworks. The GLAST experiment, an
international effort led by NASA for a gamma-ray
telescope to launch in 2006, chose HepRep to provide a
flexible, extensible and maintainable framework for their
event display without tying their users to any one graphics
application. This paper describes why GLAST selected
HepRep and how they went about implementing a
HepRep-based event display in their GAUDI framework.

2. GLAST MISSION AND INSTRUMENT

GLAST, the Gamma -ray Large Area Space Telescope
[1], measures the direction, energy and arrival time of
celestial gamma rays. It consists of a Large Area
Telescope (LAT) to measure gamma -rays in the energy
range ~20MeV - > 300GeV (there is no telescope now
covering this range) and a Gamma-ray Burst Monitor
(GBM) to provide correlative observations of transient
events in the energy range ~20keV - 20MeV (see Figure
1).

GLAST is scheduled to launch in September 2006 from
Florida into an orbit of 550 km, at 28.5 degrees inclination
and has a design lifetime of at least 5 years.

Figure 1: GLAST Instrument

2.1. Large Area Telescope

The Large Area Telescope (LAT) has an array of 16
identical "Tower" modules, each with a tracker (Si strips)
and a calorimeter (CsI with PIN diode readout) and DAQ
module (see Figure 2).

The LAT is surrounded by a finely segmented Anti-
Coincidence Detector (ACD) (plastic scintillator with
photomultiplier tube readout).

GLAST will produce 3GB of data per day. It has 30GB
onboard storage, with the data downloaded several times
per day. The data eventually makes its way to persistent
storage at SLAC.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THLT009 ePrint cs.GR/0306059

SLAC-PUB-9908 *

* Work supported in part by Department of Energy contract DE--AC03--76SF00515.

Figure 2: Large Area Telescope

3. GLAST EVENT DISPLAY
REQUIREMENTS

3.1. Previous GLAST Event Display

Prior to this work, GLAST already had an integrated
Event Display for its offline software (see Figure 3). It
had the following features:

• Windows and Linux
• simple, fast wireframe
• 3D and 2D
• tightly integrated into GAUDI [2]
• drives GLAST main offline event loop (source

generation, Monte Carlo, reconstruction, etc.)

However, this early version had the following issues:
• very limited mouse interaction
• no ability to pick on objects
• no persistency

For the longer term, GLAST wanted something more
flexible, extensible and interactive.

Figure 3: Previous Event Display

3.2. Requirements for New Event Display

Some key requirements for the new event display were
as follows:

• Multiplatform (at least Windows and Linux)
• Easy to install and start
• Fast
• 3D and 2D
• Modern GUI
• Easy navigation and browsing of the event (with

incremental download)
• Pick on objects to inquire about them
• Pick on objects to interact with physics algorithms

in the GAUDI framework
• Ability to drive the GLAST main offline event loop

(source generation, Monte Carlo, reconstruction,
etc.)

• Extensible/configurable by the user such that
require ments dictated by physics can be easily
added directly by the physics experts (should not
require graphics experts).

• New features related to what is represented (for
example changing the trajectory color to code for
charge, or energy, or any other attribute) should not
require significant re -coding.

3.3. Software Life-Cycle Issues

The correct event display design must assume that the
life-cycle of the event display may be different from the
life-cycle of the infrastructure software. Therefore, the
display should not be too tightly coupled with GLAST's
actual choices of:

• framework
• physics algorithms
• event structure
• persistency mechanisms
• Monte Carlo
• etc.

These requirements led GLAST towards an event
display paradigm rather than a specific event display
application.

3.4. The Client-Server Paradigm

An answer to GLAST's requirements is the client-server
paradigm. The server deals with physics, interaction with
reconstruction algorithms, event store, etc. The client
deals only with graphics representations (that may be
augmented with additional information that has meaning
for the experiment).

The client-server model does not necessarily imply
remote operation. Client and server may be on the same
machine or may be on different machines. The client-
server separation is in any case a useful construct to
cleanly delineate the two parts of the event display
solution.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THLT009 ePrint cs.GR/0306059

The client and server communicate with an interface.
This interface should be simple and extensible and should
accommodate all the requirements listed above. HepRep
is such an interface.

4. INTRODUCTION TO HEPREP

HepRep[3,4] is a generic interface for component or
client-server event displays. It provides for the correct
distribution of computing work between the two parts of
the system and effectively addresses the many important
maintenance issues involved in such a system.

4/9/2002Joseph Perl HepRep218

*

*

*

**

*

*

1 1

1

1

1

1

1

HepRep
Instance

HepRep
TypeTree

HepRep
InstanceTree

HepRep
AttValue

HepRep
Type

HepRep
AttDef

Linked by TypeName

ID: HepRepTreeID ID:HepRepTreeID
TypeTreeID:HRTreeID
InstanceTreeIDs:HRTreeID[]

Name: String
Desc : String
InfoURL: String

TypeName: String

X,Y,Z: Double

Name: String
Desc : String
Category: String
Extra: String

AttDefName: String
Value: Any
ShowLabel: Int

Linked by
AttDef
Name

HepRep
Point

HepRep
Action

Name:String
Expression:String

HepRep
Comments: String[]

HepRep: a Generic Interface Definition for HEP Event DisplayRepresentables

+ getInstanceTreeTop(
InstanceTreeName : String,
InstanceTreeVersion: String)
:HepRepInstanceTree;

+ getTypeTree(
TypeTreeName: String,
TypeTreeVersion: String)
:TypeTree;

+ getInstances(
InstanceTreeName : String,
InstanceTreeVersion: String,
TypeNames: String[])
:HepRepInstanceTree;

+ getInstancesAfterAction(
InstanceTreeName : String,
InstanceTreeVersion: String,
TypeNames: String[],
Actions:HepRepAction [],
GetPoints: Boolean,
GetDrawAtts : Boolean,
GetNonDrawAtts: Boolean,
InvertAtts: String[])
:HepRepInstanceTree;

+ getLayerOrder()
:String[];

+checkForException()
:String;

Comments: String[]
HepRep HepRepTreeID

Name:String
Version: String

Linked by
TypeTreeID

1

HepRep

WIRED Client
(Java)

Other HepRep
Clients

BaBar
Server

LCD
Interface

GLAST
Server

Geant4
Server

FRED Client
(C++/Ruby)

Figure 4: HepRep Breaks the Dependency

The HepRep interface breaks the dependency between
any particular experiment's event display server and any
particular event display client. The HepRep format is
independent of any one particular language or protocol. It
can be used from C++ or Java and can be shipped as
CORBA, RMI, XML, C++, Java or JNI for consumption
by WIRED [5,6], FRED[7] or any other HepRep-enabled
event display client (see Figure 4).

The rest of this section constitutes a short introduction

to HepRep. For a more complete discussion, see
http://heprep.freehep.org.

4.1. Representables

A naive implementation of a client-server event display
would have one simply ship a reference to the physics
object. The client could then use a remote interface to
make any necessary calls on that physics object.
However, such an approach would have an excessive call
overhead, as one asks track by track and hit by hit for
various coordinate points. Also, such an approach doesn’t
achieve good separation of client-server functionality.

The design decision behind HepRep is to serve
"representables", not physics objects. A representable is
the essential spatial information of a physics object (track,
calorimeter hit, etc.) and can be augmented by that
object’s physics attributes (momentum, energy, etc.).

Serving Representables keeps the detailed
reconstruction code, swimmers and detector models on the
server side where they belong. Spatial information is
assembled and shipped in an efficient manner, avoiding
the overhead of too many individual method calls.
Rendering decisions are deferred, as much as possible, to
the client.

4.2. Example Representable: Track

A precise fitted track could be served as a set of swim
step points, each augmented by helix parameters and
descriptive information (track number, particle id, etc.)(see
Figure 5). Only in the client is the final decision made
whether to represent this representable as

• a dotted line,
• or as set of individual swim step momentum

vectors,
• or as a set of helix segments.

Physics Object Representable Representation

Fitted
Track

Track Number
Particle ID
Points(n)
Helix Params(n)

Track Number: 1
Particle ID: e -

Pt 1 Params
Pt 2 ParamsPt 3 Params

Pt 4 Params

OR

OR

OR…

Figure 5: Example Representable - Track

4.3. Example Representable: Calorimeter
Crystal

A calorimeter crystal is served as the corner points of a
prism shape, augmented by an energy value and other
information. Only in the client is the final decision made
whether to represent this representable as

• a realistically sized crystal,
• or as an energy tower with a base at the real crystal

position but a length sized by energy,
• or as some other shape.

Energy
Scaled SizePhysics Object Representable Representation

Calorimeter
Cluster

Cluster Number
Particle ID
Crystal ID
Energy

Cluster Number: 1
Particle ID: muon
Energy 1.2 GeV

OR OR…

Real Size

Figure 6: Example Representable - Cal Crystal

4.4. HepRep Object Tree

HepRep representables are arranged in a tree. An
example HepRep object tree is shown in Figure 7. The
tree has two main parts: the Type Tree, which describes
characteristics common to all instances of a given type (all
tracks, all calorimeter clusters, etc.) and the Instance Tree,
which describes the specific instances of a given type (one
instance for each track, etc.) .

Another key element of HepRep is its very flexible
scheme for incremental downloads. A client can ask to:

• include or exclude Attributes
• only get Instances of a given Type
• only get Instances that have given Attributes
• get Instances according to other options

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THLT009 ePrint cs.GR/0306059

linked by name
to Type Track

linked by name to
Type Track

Type
Track

Instance
of Track

Instance of
Track

AttDefs AttVals

TypeTree InstanceTree

HepRep

Type
Cluster

AttDefs

AttValsPoints

AttVals

AttValsPoints

AttVals

AttVals

Track 1 Track 2
Type
Event

AttDefs AttVals

Type
HitOnTrack

AttDefs AttVals

GLAST Event
multiHad/xxx

GLAST Event Types
version 1.4

Figure 7: HepRep Object Tree

*

*

*

**

*

*

1 1

1

1

1

1

1

HepRep
Instance

HepRep
TypeTree

HepRep
InstanceTree

HepRep
AttValue

HepRep
Type

HepRep
AttDef

Linked by TypeName

ID: HepRepTreeID ID: HepRepTreeID
TypeTreeID:HRTreeID
InstanceTreeIDs:HRTreeID[]

Name: String
Desc: String
InfoURL: String

TypeName: String

X,Y,Z: Double

Name: String
Desc: String
Category: String
Extra: String

AttDefName: String
Value: Any
ShowLabel: Int

Linked by
AttDef
Name

HepRep
Point

HepRep
Action

Name:String
Expression:String

HepRep
Comments: String[]

+getInstanceTreeTop(
InstanceTreeName: String,
InstanceTreeVersion: String)
:HepRepInstanceTree;

+getTypeTree(
TypeTreeName: String,
TypeTreeVersion: String)
:TypeTree;

+getInstances(
InstanceTreeName: String,
InstanceTreeVersion: String,
TypeNames : String[])
:HepRepInstanceTree;

+getInstancesAfterAction(
InstanceTreeName: String,
InstanceTreeVersion: String,
TypeNames : String[],
Actions:HepRepAction[],
GetPoints: Boolean,
GetDrawAtts: Boolean,
GetNonDrawAtts: Boolean,
InvertAtts: String[])
:HepRepInstanceTree;

+getLayerOrder()
:String[];

+checkForException()
:String;

Comments: String[]
HepRep HepRepTreeID

Name:String
Version:String

Linked by
TypeTreeID

1

Figure 8: HepRep UML Diagram

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THLT009 ePrint cs.GR/0306059

4.5. HepRep Complete UML Diagram

The HepRep object contains two main trees, the
TypeTree and the InstanceTree.

The TypeTree has zero or more Types (such as track,
cluster, etc.). Types can in turn have subTypes (such as
the Hits on a Track). Each Type can also have attributes,
which may be predefined (drawing attributes such as
color, line width, etc.) or may be defined for that specific
type (such as the momentum attribute for a Track).

The InstanceTree has zero or more Instances (individual
tracks, clusters, etc). Instances can in turn have
subInstances (such as the specific Hits on a specific
Track). Each Instance can have zero or more points (the
space points used to draw a point, line, polygon or other
graphics primitive). Each Instance can also have attributes
(which override the defaults set in the relevant Type for all
Instances of the given Type).

The HepRep's four principle methods
(getInstanceTreeTop, getTypeTree, getInstances and
getInstancesAfterAction) provide the flexibility to let the
client application discover what Types are available but
only download those Instances and Attributes that are of
current interest. For a more complete discussion, see
http://heprep.freehep.org.

4.6. HepRep Attributes

The full power of HepRep comes from its simple yet
very flexible system of Attributes. Some of the drawing
attributes are predefined, but any other necessary attributes
can be defined as needed for a specific HepRep Type
(such as the Momentum attribute of a Track).

Any number of Attributes can be hung from a Type,
Instance or Point (see Figure 9).

*

*
1

1

1

HepRep
Instance

HepRep
Type

Linked by TypeName TypeName: String

X,Y,Z: Double

HepRep
Point

**
1 1

HepRep
AttDef

Name: String
Desc: String
Category: String
Extra: String

*

Name: String
Desc: String
InfoURL: String

HepRep
AttValue

AttDefName: String
Value: Any
ShowLabel: Int

Linked by
AttDef
Name

Figure 9: HepRep Attributes

There are four Categories of Attributes:
• Draw Attributes (such as thickness, color and what

shape to draw from the points) can be modified in
the client through a draw attribute editor

• Physics Attributes (such as track momentum or hit
error) can be used for visibility cuts (client side or
server side)

• PickAction Attributes define special things to do
when the user picks on the Representable (such as
remove hit and refit track)

• Association Attributes define loose associations
between Representables (such as track cluster
matching)

5. THE GLAST WAY TO HEPREP

GLAST uses GAUDI, an object oriented (C++)
framework that has a strong separation between data and
the algorithms on that data. Data are stored in the
Transient Data Store (TDS) and/or the Permanent Data
Store. Algorithms can act on the TDS, filling it or
retrieving things from it. Services provide common
functionalities on algorithms .

GAUDI has its own event loop which can be
customized at runtime through initialization files
(jobOptions files). GLAST needed to develop its client-
server HepRep framework inside GAUDI in such a way
that one could drive the event loop from the external
graphics client

• The server component lives in the GAUDI world,
having access to all Algorithms, Services and the
TDS. It has full knowledge of the physics contents
of each event.

• The client component lives outside GAUDI. It
implements the graphical user interface and has
access to HepRep attributes, but does not have
direct access to tools within GAUDI.

• The HepRep interface brings information from the
server to the client and brings commands from the
client back to the server. HepRep can be
implemented in various ways. GLAST currently
has implementations in XML (persistent) and
CORBA (live).

5.1. HepRepSvc and CorbaSvc

The GLAST event display solution involves two
GAUDI services: HepRepSvc and CorbaSvc.

At the end of each event, the HepRepSvc produces a
HepRep representation of the event from the TDS. This
representation can be published either as a persistent XML
file or as a CORBA object. The XML file may contain
Instances of more or fewer HepRepTypes depending on
user job options. To minimize unnecessary memory costs,
the design takes care that the entire HepRep is never
actually held in C++ memory but is instead streamed
directly out to XML or CORBA.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THLT009 ePrint cs.GR/0306059

GAUDI
Graphic
Client

Permanent
Data Store

Transient
Data Store

CorbaSvc

HepRepSvc xml file

HepRepAlgHepRepAlgxxxAlg

HepRep is streamed
directly out to XML and
CORBA

HepRep is streamed
directly out to XML and
CORBA

Implements GAUDI’s
IRunnable Interface
Implements GAUDI’s
IRunnable Interface

Figure 10: HepRepSvc and CorbaSvc

IBuilder

CorbaBuilder

IFiller

*

XMLBuilder

GeometryFiller MCFiller

RegistryHepRepSvc

ReconFiller Physicist just writes a
filler

Has access to TDS and
GUADI methods

Knows how to fill relevant
part of HepRep trees

Registered with
HepRepSvc

Figure 11: HepRep Filler and Builder Architecture

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6THLT009 ePrint cs.GR/0306059

The CorbaSvc implements a GAUDI IRunnable
interface and so can drive the event loop. It publishes a
CORBA HepRep object that can be used by the graphics
client to retrieve the event. The client can ask for
Instances of more or fewer HepRep Types, exploiting
the full flexibility of the HepRep download methods.

Since the CorbaSvc lives inside GAUDI, it is possible
(at least in principle) to call all of the collaboration's
algorithms on the TDS event. This framework allows
complete interaction of the graphics client with the
physics software. Since it is an IRunnable, the CorbaSvc
can stop the event loop and wait for remote method
invocations from the external client (see Figure 10).

5.2. The HepRep Filler and Builder
Architecture.

The remaining issue is exactly how the HepRep is
built out of the TDS. The goal is to make it easy for
physics experts to add whatever they want into the
HepRep hierarchy without requiring the assistance of
event display experts and without requiring the
individual physics experts to coordinate with each other.

The solution, borrowed in part from the BaBar
collaboration, is the HepRep filler mechanism. A base
HepRep filler class (IFiller) provides a variety of
convenience methods to create and fill parts of the
HepRep structure. It has methods to create HepRep
Types and Instances, linking them into the proper
hierarchy; it has methods to convert various types of data
to HepRep attributes.

For each kind of physics data to be represented (each
type of Representable), the physics expert just creates a
concrete instance of this IFiller. He has access to the
TDS and to all relevant GAUDI methods and to tools to
retrieve information from the TDS. He prepares the
relevant information from the event and then, with a few
simple calls to the base class, fills that information into
his piece of the HepRep TypeTree and InstanceTree.

Whereas BaBar's HepRep filler base class makes
direct calls to a CORBA HepRep layer, the GLAST
HepRep filler takes the abstraction one step further. The
GLAST filler uses an abstract HepRep Builder (HepRep
factory) for which the concrete HepRep implementation
can be either XML or CORBA. Thus with no extra
work on the part of the physics expert, output can be
persistent (XML) or live (CORBA) (see Figure 11).

Each filler is listed in a register (held by HepRepSvc)
with the filler associated to one or more HepRep Types.
At each event, depending on what Types the user has
asked to see, the relevant fillers are called to fill the
desired parts of the HepRep.

5.3. Value of the Filler and Builder
Architecture.

The Filler and Builder architecture provides good
separation between the physics experts and the graphics

experts. In practice, the physicist just looks at a few
example fillers and then makes a new one based on those
examples. The physicist does not need to learn anything
else about the event display server or client (no need to
learn CORBA, no need to learn XML, no need to learn
Java or Ruby)

Different physicists can work on different fillers. The
architecture provides good separation between GLAST
subsystems, either physical (for example Anti-
Coicidence Detector from Tracker) or conceptual (for
example reconstruction from Monte Carlo).

The architecture provides good abstraction from the
concrete implementation of the HepRep. One filler is
used for all the possible HepRep formats (CORBA,
XML, etc.).

The architecture is very flexible . New fillers can be
added at any time. A similar filler mechanism has been
used by BaBar to good effect.

5.4. Relationship between GLAST's Use of
HepRep and that of Other HepRep Users

HepRep is currently being used by BaBar[8], GLAST,
LCD[9] and Geant4[10], and there are two HepRep
client applications, WIRED and FRED. While all four
groups are now using WIRED, and two can use FRED
(the other two need to migrate to HepRep version 2
before they can work with FRED), the four groups use a
variety of HepRep and legacy implementations (see
Figure 12):

• BaBar has a HepRep1 CORBA server..
• LCD passes WIRED java objects using a legacy

data format (pre-HepRep).
• Geant4 has abstract HepRep1 and HepRep2

factories with implementations to XML and Java.
• GLAST has a different abstract HepRep2 factory

with implementations to XML and CORBA.

In the near future, all data sources will speak HepRep2

to an abstract HepRep factory (from the FreeHEP
Software Library [11]). By instantiation of one or
another concrete implementation of HepRep, a C++
program will be able to change from creating HepRep in
C++ memory to creating HepRep as an XML streamer (a
pure C++ solution with no external library dependencies
and no creation of the HepRep in memory) to creating
HepRep as a CORBA streamer (depends on CORBA
libraries) or creating HepRep as Java (via Java Native
Interface) (see Figure 13).

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7THLT009 ePrint cs.GR/0306059

HepRep1
HepRep2
+legacy
data
formats

LCD
(java)

Javalegacy
format

WIRED 3
(Java)

XML

HepRep2
FRED
(C++/Ruby)

GLAST
(c++)

HepRep2

BaBar
(c++)

CorbaHepRep1

Geant4
(c++)

XMLHepRep1

Corba

RMI

Java

XML

Corba

XML

Corba

LCD
Application

GLAST
XML/Corba
Streamer

BaBar Corba
Server

Geant4 XML
Streamer / Java
Builder HepRep2 Java

XML

Figure 12: HepRep Current Use Architecture

HepRep2

LCD
(java)

XML

HepRep2GLAST
(c++)

HepRep2

BaBar
(c++)

CorbaGeant4
(c++)

Corba

RMI

Java

XML

CorbaXML

C++

C++ Shared
HepRep
Factory

Java

HepRep2

Corba
XML

Java
RMI

IceCube
(java)

Java Shared
HepRep
Factory

WIRED 3
(Java)

FRED
(C++/Ruby)

Figure 13: HepRep Near -Term Future Architecture

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

8THLT009 ePrint cs.GR/0306059

6. CONCLUSIONS AND OUTLOOK

GLAST wanted a flexible, extensible and
maintainable framework for event displays without
committing to any one graphics application. GLAST has
accomplished that with a HepRep based client-server
framework integrated into their GAUDI application.
The implementation uses a filler and builder mechanism
to abstract event description from event representation
(allowing the physics expert to extend the display with
no special knowledge of CORBA, XML, Java or Ruby).

GLAST's event display implementation has given
their users a choice of client application:

• WIRED, based on Java (see Figure 14)
• FRED, based on C++ and Ruby (see Figure 15)

Because GLAST has chosen a component architecture
with a well defined, language neutral, interface, HepRep,
the GLAST user is free to choose any event display
application that implements HepRep.

Figure 14: GLAST in the WIRED Event Display

Figure 15: GLAST in the FRED Event Display

Acknowledgments

Work supported by Department of Energy contract
DE-AC03-76SF00515.

References

[1] GLAST Collaboration:
 http://www-glast.slac.stanford.edu
[2] GAUDI Framework Project:
 http://proj-gaudi.web.cern.ch/proj-gaudi
[3] J. Perl, "HepRep: A Generic Interface Definition

for HEP Event Display Representables", SLAC-
REPRINT-2000-020, CHEP 2000, Padova, Italy,
7-11 Feb 2000.

[4] HepRep Home Page:
 http://heprep.freehep.org
[5] M. Donszelmann, A. Ballaminut, C. Colonello, E.

van Herwijnen, D. Koper, J. Korhonen, M.
Litmaath, J. Perl, A. Theodorou, D. Whiteson, E.
Wolff, “WIRED - World Wide Web Interactive
Remote Event Display”, CERN-IT-2000-003,
CHEP 2000, Padova, Italy, 7-11 Feb 2000.

[6] WIRED Event Display Home Page:
 http://wired.freehep.org
[7] Fred Event Display Home Page:

http://www.fisica.uniud.it/~riccardo/research/fred
[8] BaBar Collaboration:
 http://www.slac.stanford.edu/BFROOT
[9] LCD Collaboration:
 http://www-sldnt.slac.stanford.edu/nld/
[10] Geant4 Collaboration:
 http://geant4.web.cern.ch/geant4
[11] FreeHEP Organization:
 http://freehep.org

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

9THLT009 ePrint cs.GR/0306059

