
The BTeV Software Tutorial Suite
R. K. Kutschke
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

The BTeV Collaboration is starting to develop its C++ based offline software suite, an integral part of which
is a series of tutorials. These tutorials are targeted at a diverse audience, including new graduate students,
experienced physicists with little or no C++ experience, those with just enough C++ to be dangerous, and
experts who need only an overview of the available tools. The tutorials must both teach C++ in general and
the BTeV specific tools in particular. Finally, they must teach physicists how to find and use the detailed
documentation. This report will review the status of the BTeV experiment, give an overview of the plans for
and the state of the software and will then describe the plans for the tutorial suite.

1. INTRODUCTION

The BTeV experiment is designed to make com-
prehensive and precise studies of CP violation, fla-
vor mixing and rare decays in the fields of beauty
and charm physics, both important components in
the study of flavor physics. This broader field in-
cludes the integration of beauty and charm physics
with kaon and neutrino physics and with some cos-
mological physics. A related physics goal is to per-
form an extensive search for physics beyond the stan-
dard model, both by searches for rare or forbidden
processes and by precision self consistency tests of a
large body of measurements. The proposed detector
is a forward spectrometer which will be built at the
CZero interaction region of the Tevatron pp̄ collider at
Fermilab. The Fermilab directorate has given stage I
approval to BTeV and final decisions on the funding
profile and the construction timetable are anticipated
soon. Current planning is for construction to begin in
late 2004, with physics running to begin in late 2008.
The collaboration is planning a staged installation of
the detector over a period of several years and one can
imagine that the first engineering runs on a partly in-
stalled subsystem might take place as early as 2006.

A discussion of BTeV’s physics reach and details
about the design of the spectrometer may be found
on the BTeV web site [1], in particular on the page
which links to the Proposal, the preliminary Techni-
cal Design Report (TDR) and related documents [2].
An excellent review of heavy flavor physics at hadron
colliders [3] is also available.

The sorts of physics analyses to be performed will
be similar to the beauty and charm physics studies
performed at the e+e− B-factories and to the charm
physics studies performed at the last generation of
fixed target detectors. That is, the two main types
of analyses will be full reconstruction of exclusive fi-
nal states and partial reconstruction of exclusive final
states using the line of flight as a constraint. Unlike
the e+e− B-factories, however, BTeV’s data rates and
data volumes will challenge the state of the art in data
acquisition (DAQ), triggering and computing. In this
way BTeV will be more like the current and next gen-

erations of hadron colliders.

2. OVERVIEW OF THE BTEV SOFTWARE

This section will discuss some unique aspects of the
BTeV software, overview its history and discuss the
present status and future plans. This will set the stage
for a discussion of the tutorial suite.

2.1. Offline vs Online

Over the past few decades an important trend in
High Energy Physics (HEP) has been that software
has moved to ever lower levels of the trigger sys-
tem. Moreover the previous distinctions between on-
line trigger software and offline reconstruction soft-
ware are increasingly blurred.

BTeV will take the next step in this evolution by
performing, for every beam crossing, track and ver-
tex reconstruction at the lowest level of the trigger
system, Level 1. The Level 1 trigger decision will be
based on evidence for tracks which are detached from
a primary interaction vertex. The Level 1 trigger algo-
rithm uses only hits from the pixel vertex detector and
it must perform robustly even when each beam cross-
ing contains several background interactions. One key
to making this work is the extremely low occupancy
of the pixel detector system, which reduces the com-
binatorics to a level that it can be managed with very
simple, fast executing algorithms. A second key is
the ever increasing power of available computing. It
is anticipated that the front end of Level 1 will be
implemented using Field Programmable Gate Arrays
(FPGA), while its back end will be a farm of Digital
Signal Processors (DSP). An option exists to use a
farm of general purpose processors for the back end.

Events which pass Level 1 will be sent to two more
levels of triggering, Levels 2 and 3. Level 2 will use
more refined algorithms to perform essentially the
same computation as Level 1, while Level 3 will in-
corporate information from additional detector sub-
systems. As for Level 1, the Level 2 and Level 3 al-
gorithms will make a decision based on evidence for

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THLT006 ePrint physics/0306107

a detached vertex, a strategy which will give a high
efficiency both for final states now known to be im-
portant and for many final states whose importance
is not yet appreciated. Both the Level 2 and 3 al-
gorithms will be executed on a large farm of general
purposes processors, of order 2500 computing nodes.
These algorithms will be coded using the standard
offline software environment, with all of its available
tools and infrastructure.

This picture places an important constraint on the
BTeV software: while the infrastructure must be pow-
erful enough to meet the complexity demands of offline
work it must also meet the speed demands of an on-
line system. Both of these uses require a high level of
reliability and robustness.

2.2. History of the BTEV Software

Design studies for BTeV date back to the mid 1990’s
and were originally performed using MCFast [4], a
fast, parameterized detector simulation package. Af-
ter a few years, a Geant 3 based package, BTeVGeant,
was developed for detailed simulations, in particular
for those studies in which it is important to simulate
the production of new particles produced by the inter-
action of their parent particle with the detector and
support materials.

A suite of trigger, reconstruction and analysis al-
gorithms was developed to operate on the hits gen-
erated by these packages. Many of these algorithms
are quite sophisticated; for example the track fitting
is done using a Kalman filter and the reconstruction
codes for the Electromagnetic Calorimeter (ECal) are
derived from the algorithms used by the Crystal Ball
and CLEO collaborations. The mass and vertex con-
strained fitting package is based on KWFIT[5]. The
most mature of these codes are the prototype codes
for the Level 1 and Level 2 trigger algorithms.

These trigger, reconstruction and analysis codes
were developed very quickly and were available early
in the design process. This permitted BTeV to use
high level physics metrics to evaluate design changes.
For example, when the amount of material in the
pixel detector support structure was increased, it was
straight forward to evaluate, for many final states, the
degradation in vertex resolution, mass resolution and
efficiency due to scattering, interactions and pair con-
versions in the additional material. The numbers pre-
sented in the BTeV proposal and related documents
were obtained using this software.

With the exception of the prototype Level 1 trig-
ger codes, none of these codes were designed to be
used in the long term. They were designed to give
detailed and precise but fast estimates of the physics
reach of detector variations. To achieve these goals
with the few people and short time available, many
assumptions and idealizations were hard coded. Most

detector components, for example, are presumed to be
perfectly aligned and no provision is made to correct
for misalignment; this turns many 3D problems into
1D or 2D problems, greatly simplifying the algebra
and coding times. The facilities for handling of data
and meta-data are primitive and will not scale to the
anticipated data volumes. Finally, use of these codes
requires fluency with many magic words and phrases,
documented only by oral tradition.

These codes, written in a mixture of Fortran, C and
C++, have served BTeV well but a well planned and
well executed successor is needed take the next steps
toward the physics goals of the experiment.

2.3. Moving Toward the Future

BTeV is now working to design and implement a
modern software infrastructure, written in C++, in
which the next generation of physics software will live.
It is expected that the first new physics codes will be
written starting about a year or two from now. By
that time we will have defined the major components
of the system and defined how they interact with each
other. We will also have implemented enough of the
core infrastructure to allow quasi-independent devel-
opment of the physics codes and of the utilities and
services which they require.

The new software is not required to reuse any ex-
isting data structures or code, although it may if that
turns out to be the best design decision. While it is
required to read files written in the existing formats,
it will, internally, construct new style events before
presenting the event data to the users.

One can think of BTeV as part of the second gener-
ation of experiments using modern software, the first
being those experiments which use predominantly use
C++ and which are running now. As part of the de-
sign process, BTeV is studying the many successes and
the few failures of the first generation experiments.

2.4. Understanding the User Community

One of the lessons learned from previous experi-
ments is that it is important to understand that the
software will be used by many people with a broad
spectrum of skills. By far the largest part of the user
community comprises experienced physicists with lit-
tle or no C++ experience and little or no formal com-
puter science training. In previous generations of ex-
periments, usually with FORTRAN based software,
such physicists wrote the vast majority of the physics
code and performed most of the analyses. It is crit-
ical to the success of BTeV that these physicists be
able to get up to speed quickly and that they not be
marginalized by long learning curves.

A second, and rapidly growing, class of users are
those experienced physicists with a small amount of

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THLT006 ePrint physics/0306107

C++ training and practice. One of the challenges of
dealing with this community is to convince them of
the need for ongoing education. In particular they
have a continuing needs to see illustrations of good
programming practice and to be educated to avoid
bad practices which have infiltrated the communal bag
of tricks. Among these bad practices are a reliance
on variables with global scope, inattention to const
correctness, inappropriate use of inheritance, unnec-
essary copies of large objects hidden behind an opaque
syntax, and the use of casts, particularly (void *), to
defeat the type safety mechanisms, rather than de-
signing to avoid the need for casts. A particularly per-
nicious problem is to is a tendency to overuse newly
learned skills and tricks, forcing them on problems for
which there are more natural solutions.

We anticipate only a small handful of users who
are both experienced physicists and well trained, ac-
complished C++ programmers. These people need
concise, well indexed and well cross-referenced, docu-
ments which describe the BTeV specific software.

Another important class of users are new physi-
cists, inexperienced but energetic and enthusiastic,
who have the same broad spectrum of programming
backgrounds as do their experienced counterparts.
For all users, but for these users in particular, there
needs to be cross-referencing from the code documen-
tation to the corresponding physics documentation.

One of the lessons reported by other experiments
is that most users start a new coding project by find-
ing related code and modifying it to suit the new task.
(In the LATEX source for this report, the author has in-
cluded some fragments which he copied from someone
in the mid-1980’s!) Indeed, this is how most people
learn both the experiment specific software tools and
how to use a new computer language. Therefore early
code fragments are extensively copied and any poor
design choices found in them will be widely propa-
gated; even outright errors will be widely propagated.

Therefore it is critical for the BTeV software team
to provide these early code fragments and to make
people aware that they exist. This is a natural mis-
sion for a suite of tutorial examples. In order to be
widely accepted the tutorials must implement solu-
tions to real world problems which are encountered in
the day to day life of a working high energy physicist.
A corollary of this discussion is that the interfaces seen
in these tutorials must be among the first designed. A
second corollary is that the tutorials must be available
very early and must be maintained throughout the de-
velopment process.

2.5. Outline of the Software Model

An early prototype of a new software suite for BTeV
is now available. The design of this prototype has
four components, the framework, an event data model

(EDM), modules and services. The physics codes will
live in the modules, which can respond to such occur-
rences as start of job, start of run, new event, end of
run, end of job and others which are yet to be defined.
The job of the framework is to learn that some thing
such as start of a new run or a new event in memory
has occured and to then call the appropriate method
of each module. The order in which the modules are
called is specified by the user. Modules may commu-
nicate with each other only via the EDM and they
may influence flow control by sending messages back
to the framework. The so called services are present
to provide information and services to the modules
and to the framework. Examples of services include
a message logger, a geometry manager, a calibration
manager, memory use monitors, event timers and so
on. In the present design, input and output (IO) is
done by a specialized set of modules.

The existing prototype has a framework, a mod-
ule base class, some module concrete classes, a few
prototype services, a run time configuration facility
based on the Run Control Parameter (RCP) system
from the DZero experiment and the rudiments of an
EDM, including data provenance. The prototype also
has track, shower and vertex classes, collections of
which live in the EDM. The prototype IO module
reads events created by BTeVGeant and reformats
them into a new style event. It does not yet write
events in the new style but it can write out selected
events in the old style.

Two of the software engineers working part time
on BTeV spend the majority of their time support-
ing the CDF and DZero Run II software effort. So
the existing prototype code borrows ideas, and some
code fragments, the CDF and DZero Run II software.
Their code was not reused outright because it contains
compromises needed to deal with their legacy software
and legacy use patterns.

Most of the effort to date has gone into understand-
ing the interfaces among the major components. Par-
ticular attention has been paid to interfaces which will
be seen frequently by inexperienced C++ program-
mers, especially those interfaces which will be used
heavily during data analysis. Asking a question as
simple as “how do I make a histogram of the momen-
tum of all tracks” touches on many interfaces. For
these interfaces the overriding design principle was to
make the interface as simple as possible. Often this
meant introducing complexity at a lower level, an ac-
ceptable trade-off because experienced C++ designers
are available to design and write the lower layers. In
some cases the team could not produce a design with
both the required capabilities and a a truly simple in-
terface. In these cases there are two design principles:
the interfaces must conform to a small number of pat-
terns and the use of these patterns must be easy to
teach to inexperienced users, even if they do not fully
appreciate all of the details. The hope is that, if the

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THLT006 ePrint physics/0306107

complex interfaces conform to a small number of pat-
terns, new users can learn a difficult lesson once and
apply it many times.

This plan, of concentrating first on the analysis
interfaces was adopted during 2002. It arose from
the observation, discussed in section 2.4, that a small
number of early code fragments will be heavily copied
and will set the overall tone and quality of physics
analysis software throughout the experiment. The de-
sign team was encouraged to hear several reports at
this CHEP in which the speakers said that their design
effort should have paid more attention to the analysis
phase of the experiment.

So far the prototype code is rigorous about type
safety, exception safety and const correctness. The
design team is evaluating the SIUnits[6] package and
will soon make a recommendation about its use. The
prototype code is also being reviewed to ensure that
it is thread safe; it is anticipated, based on the ex-
perience of CDF and DZero in Run II, that the code
needed to access the calibration database may well use
threads.

The final piece in the existing prototype is a tutorial
suite.

3. THE TUTORIAL SUITE

3.1. The Mandate

The mandate for the tutorial suite is to allow all
physicists, but particularly those with little or no
C++ experience, to do useful work as quickly as pos-
sible. And there are many related goals. The tutorial
suite must sell the new software infrastructure to the
collaboration, which means selling both the choice of
C++ and our design in particular. It must teach good
C++ practice, both in general and in situations which
are peculiar to the BTeV software. It should give an
overview of all of the software tools supported by or
recommended by BTeV. This overview should form an
index into the detailed documentation, including the
documentation for the C++ language, for third party
products, such as ROOT, and for BTeV specific tools.

3.2. How to Achieve these Goals

To meet the mandate, tutorial examples must be
chosen from real world problems in the day to day
life of a working high energy physicist. Such prob-
lems range from occupancy maps of a subdetector, to
the inclusive momentum distribution of all tracks, to
complete simulated analyses. When data is available
the examples should include real analyses. Each of
the examples must always “just work” and each must
produce something concrete, such as a histogram or a

formatted printout which can be compared to a refer-
ence. That reference must be distributed along with
with the example code. Ideally the instructions should
be no more complex than: check out the tutorial from
CVS; gmake; look at the histograms.

Each of the tutorial examples is accompanied by
narrative documentation because a reference manual
alone would be far from adequate. Narrative docu-
mentation is particularly important for the first few
examples in which many new ideas must be intro-
duced. As much as possible the narrative should start
from familiar ideas and proceed comfortably from
there to the unfamiliar. The narrative should spiral
in toward the details of the problem, making a short
first pass which gives an overview, adding details on
successive passes.

Consider for example, the existing first example.
This loops over all of the reconstructed charged tracks
in an event to make two histograms and one ntuple.
The overview immediately answers four questions,

1. Where do I specify the run time configuration in-
formation such as the number of events to read,
the name of the input file and the name of the
histogram file?

2. Where do I find the code which is called once at
the start of the job, such as booking histograms?

3. Where do I find the code which is called once
per event, such as filling histograms?

4. Where do I find the code which is called once at
the end of the job?

The narrative gives brief answers to these questions.
It then says to look at the code which is called called
once at the start of the job and identify the lines which
book the histograms. The narrative then mentions
that the histogram package is root and includes a link
to the root documentation. Next it says to find the
code which is called once per event and find the code
fragment, inside the track loop, which deals with the
properties of one track. The narrative gives a few
sentences about what information is available about
reconstructed charged tracks, followed by a link to the
detailed documentation about these tracks. The first
pass concludes by pointing out that the histograms
are automatically written out at the end of job.

Until this point, the narrative documentation has
not mentioned any of the words framework, module,
EDM, C++, class, object, const iterator, template,
handle, STL, vector and so on. The subsequent passes
of the narrative documentation briefly introduce these
ideas and include links to their detailed documenta-
tion. Usually this detailed documentation does not
refer to a immediately to reference manual. Instead
it a refers to a narrative description which, in turn,

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THLT006 ePrint physics/0306107

has links to the reference manuals. As each code frag-
ment is discussed in detail, the documentation men-
tions both the big ideas from the point of view of the
design of the BTeV software and comments on any
new C++ language or syntax elements which are en-
countered for the first time. In the future these parts
of the narrative will also include links to an online
C++ language reference.

Writing the narrative documentation was an iter-
ative process. There were several reorganizations of
the detailed documentation so that it would be more
natural to link it from the narrative documentation
of the tutorial. There were also several reorganiza-
tions after receiving feedback from BTeV physicists
who had started to use the new software.

The second of the existing tutorial examples loops
over all reconstructed ECal showers in an event and
makes some histograms of their properties. The nar-
rative documentation for this example is much shorter
since it can refer back to the narrative documentation
for example 1 to discuss the big picture issues of frame-
works and modules and so on. Whenever possible the
narrative emphasizes the similarities between looking
at tracks and looking at showers. As this documenta-
tion was written it required reorganization of some of
the material in the detailed documentation and some
of the narrative for the first example.

A few paragraphs earlier it was pointed out that a
reference manual alone is not sufficient. But it is most
certainly necessary. The Milano group within BTeV
has developed software for control of the DAQ sys-
tem and monitoring of data quality in the next test-
beam run for the BTeV pixel detector. They have
used DoxyGen[7] to produce an online reference man-
ual for their system. Based on this experience the
offline software team anticipates using DoxyGen, or
a similar product, to provide online reference man-
uals. The narrative documentation will then be up-
dated with links into the reference manuals.

At present each of the tutorial examples provides
a set of reference histograms and users are instructed
to compare the histograms from their test run against
the reference. This step is intended to give the users
confidence that they have correctly compiled, linked
and executed the software. It has the unfortunate side
effect that the least experienced users are the first to
discover many small bugs. In the future each tutorial
will be compiled, linked and run as part of a nightly
validation suite. At that time the output histograms
will be compared programatically to the reference and,
if they are not identical, a message will be sent to the
software czar. In this way it is hoped that new users
will be better shielded from undiscovered bugs. At
the presentation of this talk at CHEP, several people
from the audience encouraged BTeV to do this as soon
as possible as they found it invaluable for their own
experiments.

Part of the mandate is to sell C++ to the collabo-

ration. While most of the collaboration is accepting of
C++, and many are even enthusiastic, there remains
a small but vocal group of skeptics. Their skepticism
derives from bad experiences, either their own or their
colleagues’, with C++ based software on other exper-
iments. After talking with several of these people the
design team concluded and that a well crafted set of
tutorials would go a long way toward alleviating most
of their concerns.

3.3. A www Wish List

An issue for which BTeV has a partly satisfactory
solution is how to synchronize code documentation
with code versions. This is particularly important for
the new software which is changing rapidly. At present
all documentation, including the web pages, are stored
within the code repository in which the code is stored.
This documentation is tagged with the same version
stamps as is the code and both are served to the web
from the main BTeV web site. When one asks to
see the documentation for the tutorials, the reader is
told about available code versions and asked to pick
one. The documentation for that version will then be
shown. In this way one, may change the documen-
tation at the head of the repository to match code
changes and not worry too much that it will confuse
someone who is still working with an earlier version
of the code.

While this system can be used to ensure that doc-
umentation within the tutorials is internally consis-
tent, it does not stop someone who is maintaining an
unversioned web page, or a web page with an inde-
pendent version sequence, from linking to one of the
web pages inside of the tutorials. As the code evolves
there is no reliable mechanism to ensure that the link
is updated to point to the new version of the docu-
mentation. BTeV is interested in learning about more
robust solutions to this problem.

In the narrative documentation within the tutori-
als, short code fragments from the example code are
copied into the narrative documentation and are dis-
cussed in the following paragraphs. At present these
code fragments are copied by hand from the source
code file into the .shtml file which holds the narra-
tive documentation. BTeV would like to have a tool
which can extract appropriately marked lines from the
source file and drop it into the narrative documenta-
tion. This would help to keep the code and documen-
tation synchronized.

3.4. Looking Ahead

As BTeV continues to develop the new software, the
tutorials will be updated to match. As the tutorials
are updated, and as people use them and give feed-
back, the design team will learn which features peo-

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THLT006 ePrint physics/0306107

ple find easy to use and which they find hard, which
features are missing and needed immediately, which
information lives in the wrong place or is otherwise
hard to find, and which features are simply undocu-
mentable or unteachable to new users. These lessons
will be fed back into the design of the new code and
into the design of the tutorials.

The long term goal is to have a complete offline
software suite, both the infrastructure and the physics
code, available well before data taking starts in 2008.
Moreover the major components need to be function-
ing well by 2006 in order to support engineering runs
on partially installed subsystems. The short term
goals are more modest: to prepare the ground for the
long term. In the next six to 12 months the design
team expects to complete the design of the major in-
terfaces and to continue the work on the infrastructure
code. An important part of the work in this time will
be to maintain and extend the tutorial suite, so that
it can be used to train the physicists and computer
scientists who will meet the long term goals.

4. SUMMARY AND CONCLUSIONS

BTeV has begun the long process of designing and
implementing a modern offline software suite which
will be used both in the Level 2/3 trigger and for of-
fline data processing. In the initial stages the design
team has focused on the interfaces which will be seen
frequently by inexperienced C++ programmers, par-
ticularly during data analysis. As soon as prototype
code was available the design team produced a suite
of tutorials to teach the new software to other the full
spectrum of BTeV physicists. These tutorials are an
integral part of the BTeV software suite and they will
evolve along with the project. The tutorials will serve

as a test bed for new ideas and will be integrated into
a nightly validation suite. They will also serve as an
index to and overview of the detailed documentation
for all of the collaboration’s software.

Acknowledgments

The author would like to thank the conference orga-
nizers for a well run and informative conference held
in most pleasant surroundings. This work was sup-
ported in part by Fermilab, which is operated by the
Universities Research Association, Inc. under Con-
tract No. De-AC02-76H03000 with the United States
Department of Energy.

References

[1] The BTeV web site is at the url:
http://www-btev.fnal.gov .

[2] The BTeV proposal, and related documents are
available at the url: http://www-btev.fnal.gov/
public/hep/general/proposal/index.shtml.

[3] K. Anikeev et. al., Proceedings of the workshop on
“B-Physics at the Tevatron: Run II and Beyond”,
Fermilab-Pub-01/197, hep-ph/0201071, 2001.

[4] The MCfast home page is:
http://cepa.fnal.gov/CPD/mcfast/ .

[5] The KWFIT home page is:
http://www.phys.ufl.edu/ avery/kwfit/ .

[6] The SIUnits package is described at the url:
http://www.fnal.gov/docs/working-
groups/fpcltf/Pkg/SIunits/doc/0SIunits.html

[7] The Doxygen home page is:
http://www.stack.nl/ dimitri/doxygen/

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6THLT006 ePrint physics/0306107

