

HBT-Analyzer – Particle Correlations Analysis Toolkit
Piotr Krzysztof Skowronski for ALICE Collaboration
CERN, Genève 23, CH-1211, Switzerland and

Warsaw University of Technology, Faculty of Physics, ul. Koszykowa 75, 00-662 Warsaw, Poland

The HBT -Analyzer is an universal tool for particle correlations analysis under the ROOT environment. It provides an efficient mixing
mechanism, a wide range of correlation and monitoring functions, and a set of cuts that are applicable on different levels of analysis.
Thanks to an object oriented design it is very easily extensible for particular user needs. It also enables easy resolution studies of Monte-
Carlo simulated data. The general concept and design is presented as well as example analysis results obtained within ALICE
experiment.

1. INTRODUCTION

This paper describes a package for particle
correlations analysis developed within the ALICE [1]
offline framework [2]. Correlations are used in particle
physics to measure the size of emission volume [3]. It
has deep analogy with Hanbury-Brown and Twiss
(HBT) method used in astronomy for star size
measurement [4]. This name is also commonly used in
High-Energy Physics. HBT-Analyzer is applicable in
any-multi event analysis where all particle combinations
are considered, for example invariant-mass analysis.

2. GOAL OF HBT ANALYSIS

The output of HBT analysis is a Correlation Function
(CF) of some variable Q (e.g. Qinv, QOut, QSide, QLong or
Minv). CF is a histogram created from the division of two
other histograms, further called numerator and
denominator. Numerator is obtained from Q values
calculated for pairs of particles (or triplets) coming from
the same events. Denominator is calculated the same
way, however particles are taken from different events.
This process is called mixing.

3. ALGORITHM

Algorithm is rather simple and consists of the
following steps:

1. Loop over events (I)
2. Loop over particles from event I
3. Loop over events (II)
4. Loop over particles from event II
5. Checking cuts
6. Calculation of desired Q value
7. If particles come from the same event numerator

is filled, or denominator in the other case.
The goal was implementation of this algorithm in such

a universal way that it can be used in any kind of
analysis.

During the design process the following use-cases
were taken into account:

• calculation of many correlation functions in single
analysis pass

• calculation of the same kind of function but with
different cuts in single analysis pass

• in Monte-Carlo data analysis comparison between
original events and events after detector
simulation and reconstruction

• monitoring of single particle spectra
• resolution plots.

Performance was a very important objective during
software design and implementation. This is especially
important in such analysis since it is remarkably time
consuming (quadruple loop), and each unnecessary
calculation or call inside the inner loop transforms into
hours or even days of computing time.

It is designed so that the user can steer the analysis
process by applying cuts at almost any level of analysis,
starting at data reading, through the mixing procedure
and finally in each calculated function.

4. ARCHITECURE

Architecture and object hierarchy is shown in Fig. 1.
The central object of the package is analysis (class
AliHBTAnalysis). It takes data from a reader (derivative
of AliHBTReader class). A user can plug into the
analysis arbitrary number of correlation and monitoring
functions. Particle cut (AliHBTParticleCut class) and
pair cut (AliHBTPairCut class) can be applied on
different levels of analysis. Pair cut is a data member of
analysis and correlation function classes. Pair cut,
reader and monitor functions use particle cut . Data are
stored in and exchanged via internal structures: particle
(class AliHBTParticle), event (class AliHBTEvent) and
run (class AliHBTRun).

4.1. Functions

The function is an object that calculates one
histogram. In experimental data analysis the most
important function is the one that fills the numerator and
denominator histograms for pairs of reconstructed
particles. However, there are more kinds of functions
needed:

• resolution functions (especially required in Monte
Carlo data analysis)

• monitoring functions – enable to see distributions
of particles properties used in analysis (influence
of cuts)

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint physics/0306111THLT005

All these functions have different input parameters
and need to be handled separately in analysis. Functions
in the HBT-Analyzer can be systematized according to
two criteria: the functionality that they serve and the
dimensionality. Using the functionality criterion,
correlation and monitoring functions are distinguished.
Accordingly to the dimensionality functions are
categorized into 1D, 2D and 3D.

4.1.1. Correlation functions

Currently two kinds of correlation functions are
implemented. They can be one- or two-pair, depending
on the input they require to fill one entry. One-pair
function is the most important in experimental data
analysis and is a base class for such one as CF(Qinv).
Two-pair function is designed for resolution analysis,
where the comparison of value calculated for pair of
simulated particles with one made of reconstructed
tracks is needed. They are also used in so-called weight
algorithms [3]. Implementation of one- and two-triplet
functions is foreseen in the future, and it will enable
handling three particle correlations.

The fact that all of functions mentioned above can be
one-, two- or three-dimensional, imposes class hierarchy
as shown in Fig. 2. AliHBTAnalysis class depends only
on interfaces defined by AliHBTOnePairFctn and
AliHBTTwoPairFctn classes. They define pure virtual
methods

• ProcessSameEventParticles
• ProcessDiffEvenOarticles
• Init
• WriteFunction

The first two of these methods differ in number of
input parameters. AliHBTOnePairFctn requires one-pair
whereas AliHBTTwoPairFctn needs two pairs .

All functionality that is dependant on function
dimension is implemented in AliHBTFunction1D,
AliHBTFunction2D and AliHBTFunction3D classes,
which in turn inherit from AliHBTFunction class.
AliHBTFunction class implements methods common for
all functions and fixes user interface for (re)naming,
writing, resetting, scaling, etc. routines.

The classes that constitute the bottom layer of the
diagram are base ones for concretized user classes.

Figure 1: Architecture: class dependence schema

Figure 2: Correlation functions inheritance schema. In all classes AliHBT prefix is skipped.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint physics/0306111THLT005

Creating a new correlation function requires
implementing only two methods in most cases:

• double GetValue(AliHBTPair*)
• TH1* GetResult()

The first one calculates the correlated value for a pair
and the second one returns a result histogram. HBT -
Analyzer already implements a wide set of most
common correlation functions like Qinv, QOut, QSide or
QLong .

4.1.2. Monitoring functions
Monitoring functions are designed to create

distributions of particle and pair properties that are used
in analysis. This functionality is especially desired when
the user requires knowing the influence of applied cuts
on a given distribution. Currently there are one- and two-
particle monitoring functions implemented in the HBT -
Analyzer.

The inheritance tree of monitoring functions (Fig.3) is
simpler than the hierarchy of correlation functions.
There are no separate base classes for each dimension,
since they would be irrelevant in this case. They would
be completely empty with the definition of just one
histogram each.

All classes in Fig.3 are abstract and user functions
must be derived from the leaf classes.

4.2. Analysis object

User can set six types of functions i.e. three types for
correlation and monitoring each, namely for:

• reconstructed tracks,
• simulated particles,
• reconstructed tracks and simulated particles.

The last item corresponds mainly to resolution analysis
but is also used in weight algorithms. Therefore, a more
general term is used. In the real data analysis only
reconstructed track functions are calculated. Two other
types are used only in Monte–Carlo data analysis.

The user triggers analysis by calling the Process
method with an option indicating which data are to be
used in the analysis: simulated, reconstructed or both. In
the case of both being used simultaneously, the reader
must ensure that nth particle corresponds to nth
reconstructed track in a given event.

In a general case, all particles are used in analysis and
every particle is mixed with all the others. In order to
speed up computation time, the user can set a pair-cut
object in the analysis object that filters out pairs before
passing them to functions. For optimization reasons this
cut is checked progressively. The first check is
performed immediately when the first particle is picked
up. If the particle does not pass the check then it does not
make sense to loop over all the other particles. The next
check is performed when the second particle is picked
from an event, and at last the pair properties are verified.
Pair cut is designed in a way that allows checking the
pair properties only without examining each particle in a
pair to avoid repeating of the tests.

In the case of non-identical particle analysis , or more
generally, in the case of mutually exclusive cuts on
individual particles (a particle cannot be accepted by
both cuts) faster algorithm is used. In such case pre-
selection of particles is performed. In the outermost
event loop all particles are checked if they pass any of
the individual cuts in a pair. Pointers to particles that
passed the first or second particle cut are stored in two
separate arrays. Such pre-selected particles are mixed
and numerators are filled. Arrays of particles that passed
a cut on second particle are buffered in a FIFO queue.
Particles from the buffer are mixed with the array of first
cut particles and denominators are filled. The size of the
queue is adjustable by the user. The choice of mixing
algorithm is made automatically by an analysis object on
the basis of the particle-cut properties.

One would think that the pre-selection technique is
also faster in a general case and that it is enough to make
sure that a particle is not mixed with itself. However, in
this case the optimal way is particle selection on the
level of reading (see section 4.3).

4.3. Readers

Reader is an object that provides data to analysis.
HBT-Analyzer is easily customized to any input data
format by creating a specialized reader that inherits from
class AliHBTReader. This base class defines pure virtual
interface that allows implementation of buffering as well
as non-buffering readers, depending on particular user
needs.

The base reader class implements functionality for
particle filtering at reading level. The user can set any
number of particle cuts in a reader, and the particle is
read only if it fulfills the criteria defined by any of them.

It also has a feature that allows specifying multiple
data sources, which can be sequentially read. Many
analysis objects can use one reader instance, if needed.

Figure 3: Monitoring functions class herarchy,

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint physics/0306111THLT005

4.4. Cuts

Currently the HBT-Analyzer implements two kinds of
cuts: particle and pair cut. Cut object defines the ranges
of many properties that a particle or a pair may posses
and it also defines a method, which performs the
necessary check. However, usually a user wants to limit
ranges only of a few properties. For speed and
robustness reasons, the design presented in Fig. 4 was
developed.

The particle cut object has an array of pointers to
particle base cuts (class AliHBTBaseCut). The number of
entries in the array depends on the number of the
properties set by the user. The base cut implements
checks on a single property. It implements maximum
and minimum values and a virtual method Pass that
performs a range check of the value returned by pure
virtual method GetValue. Implementation of a concrete
base cut is very easy in most cases: it is enough to
implement GetValue method. The HBT-Analyzer
already implements a wide range of base particle cuts,
and AliHBTBaseCut class has a comfortable interface for
setting all of them. For example it is enough to invoke
the SetPtRange(min,max) method and behind the scenes
a proper base cut is created and configured.

All objects, which have a member pointer to a particle
cut, by default create an empty cut (class
AliHBTEmptyParticleCut). This is a derived class of
AliHBTParticleCut that accepts any particle.

The pair cut follows the design of the particle cut. In
addition to an array of pointers to the base pair cuts it
has two pointers to particle cut, one for each particle in
the pair. An empty pair cut is implemented as well. In
addition, all objects that have a pair cut data member by
default create the empty cut.

4.5. Pair

The pair object points to two particles and implements
a set of methods for the calculation of pair properties.
The pair buffers calculated values and intermediate
results for performance reasons. This applies to the

quantities whose computation is time consuming and
also to quantities with a high reuse probability. A
Boolean flag is used to mark the already calculated
variables. To ensure that this mechanism works
correctly, the pair internally sets and reads the values of
its variables calling its own methods, instead of
accessing the variables directly.

Pair object points to another pair with swapped
particles. The existence of this feature is connected with
the mixing implementation: when particle A is mixed
with B, swapped pair is not going to come. In non-
identical particle analysis their order is important, and
pair cut may reject a pair while a reversed one would be
accepted. In order to solve this problem, pair cut checks
swapped pair as well, if a regular one is rejected. This
solution automatically takes advantage of the buffering
technique.

5. SUMMARY AND FUTURE
DEVELOPMENT PLANS

HBT-Analyzer is a universal and robust tool for
particle correlation analysis. It can be used by any
experiment providing the proper reader object is
implemented. The design ensures that it is very easy
customizable and extendible to new functions and cuts.

Special care is taken for the performance of the
package. Several techniques like buffering, specialized
mixing, and cuts with flexible lists of properties are
used.

ALICE successfully uses this tool in studies of
detector and reconstruction software capabilities [6].
Design ensures that we are already prepared for real data
analysis. Example plot is presented in Fig.5, where is

Qinv correlation function for events generated with the
Monte-Carlo generator (dots) and this function for tracks
reconstructed with Alice Time Projection Chamber
(squares) and Inner Tracking System (triangles).

Figure 4: Particle cut – classes diagram

Figure 5: Example results: Qinv correlation function for
π+ π+

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint physics/0306111THLT005

The HBT -Analyzer is still being developed and
extended. The main features that are planned for
implementation in the near future are event cut, three
particle and azimuthally sensitive analysis. Software and
documentation are available on [7].

References

[1] http://alice.web.cern.ch/Alice/
[2] http://alisoft.cern.ch/offline
[3] G. Goldhaber, S. Goldhaber, W. Lee and A. Pais,

Phys. Rev. 300 (1960)
[4] R. Hanbury-Brown and R.Q. Twiss, Nature 178

(1956) 1046
[5] R. Lednicky, V.L. Lyuboshitz: Sov. J. Nucl. Phys.

35 (1982) 770; Proc. CORINNE 90, Nantes,
France, 1990 (ed. D. Ardouin, World Scientific,
1990) p. 42; Heavy Ion Physics 3 (1996) 93.

[6] http://alice.web.cern.ch/Alice/ppr/
[7] http://alisoft/cern.ch/people/skowron/

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint physics/0306111THLT005

