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The HBT -Analyzer is an universal tool for particle correlations analysis under the ROOT environment. It provides an efficient mixing 
mechanism, a wide range of correlation and monitoring functions, and a set of cuts that are applicable on different levels of analysis. 
Thanks to an object oriented design it is very easily extensible for particular user needs. It also enables easy resolution studies of Monte-
Carlo simulated data. The general concept and design is presented as well as example analysis results obtained within ALICE 
experiment. 

1. INTRODUCTION 

This paper describes a package for particle 
correlations analysis developed within the ALICE [1] 
offline framework [2]. Correlations are used in particle 
physics to measure the size of emission volume [3]. It 
has deep analogy with Hanbury-Brown and Twiss 
(HBT) method used in astronomy for star size 
measurement [4]. This name is also commonly used in 
High-Energy Physics. HBT-Analyzer is applicable in 
any-multi event analysis where all particle combinations 
are considered, for example invariant-mass analysis. 

2. GOAL OF HBT ANALYSIS 

The output of HBT analysis is a Correlation Function 
(CF) of some variable Q (e.g. Qinv, QOut, QSide, QLong or 
Minv). CF is a histogram created from the division of two 
other histograms, further called numerator and 
denominator. Numerator is obtained from Q values 
calculated for pairs of particles (or triplets) coming from 
the same events. Denominator is calculated the same 
way, however particles are taken from different events. 
This process is called mixing. 

3. ALGORITHM 

Algorithm is rather simple and consists of the 
following steps: 

1. Loop over events (I) 
2. Loop over particles from event I 
3. Loop over events (II) 
4. Loop over particles from event II 
5. Checking cuts 
6. Calculation of desired Q value 
7. If particles come from the same event numerator 

is filled, or denominator in the other case. 
The goal was implementation of this algorithm in such 

a universal way that it can be used in any kind of 
analysis.  

During the design process the following use-cases 
were taken into account: 

• calculation of many correlation functions in single 
analysis pass 

• calculation of the same kind of function but with 
different cuts in single analysis pass 

• in Monte-Carlo data analysis comparison between 
original events and events after detector 
simulation and reconstruction  

• monitoring of single particle spectra 
• resolution plots. 

Performance was a very important objective during 
software design and implementation. This is especially 
important in such analysis since it is remarkably time 
consuming (quadruple loop), and each unnecessary 
calculation or call inside the inner loop transforms into 
hours or even days of computing time. 

It is designed so that the user can steer the analysis 
process by applying cuts at almost any level of analysis, 
starting at data reading, through the mixing procedure 
and finally in each calculated function. 

4. ARCHITECURE 

Architecture and object hierarchy is shown in Fig. 1. 
The central object of the package is analysis (class 
AliHBTAnalysis). It takes data from a reader (derivative 
of AliHBTReader class). A user can plug into the 
analysis arbitrary number of correlation and monitoring 
functions. Particle cut  (AliHBTParticleCut class) and 
pair cut   (AliHBTPairCut class) can be applied on 
different levels of analysis. Pair cut is a data member of 
analysis and correlation function classes. Pair cut, 
reader and monitor functions use particle cut . Data are 
stored in and exchanged via internal structures: particle 
(class AliHBTParticle), event (class AliHBTEvent) and 
run (class AliHBTRun).  

4.1. Functions 

The function is an object that calculates one 
histogram. In experimental data analysis the most 
important function is the one that fills the numerator and 
denominator histograms for pairs of reconstructed 
particles. However, there are more kinds of functions 
needed: 

• resolution functions (especially required in Monte 
Carlo data analysis) 

• monitoring functions – enable to see distributions 
of particles properties used in analysis (influence 
of cuts) 
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All these functions have different input parameters 
and need to be handled separately in analysis. Functions 
in the HBT-Analyzer can be systematized according to 
two criteria: the functionality that they serve and the 
dimensionality.  Using the functionality criterion, 
correlation and monitoring functions are distinguished. 
Accordingly to the dimensionality functions are 
categorized into 1D, 2D and 3D.  

 
4.1.1. Correlation functions 

Currently two kinds of correlation functions are 
implemented. They can be one- or two-pair, depending 
on the input they require to fill one entry. One-pair 
function is the most important in experimental data 
analysis and is a base class for such one as CF(Qinv). 
Two-pair function is designed for resolution analysis, 
where the comparison of value calculated for pair of 
simulated particles with one made of reconstructed 
tracks is needed. They are also used in so-called weight 
algorithms [3]. Implementation of one- and two-triplet 
functions is foreseen in the future, and it will enable 
handling three particle correlations. 

The fact that all of functions mentioned above can be 
one-, two- or three-dimensional, imposes class hierarchy 
as shown in Fig. 2. AliHBTAnalysis class depends only 
on interfaces defined by AliHBTOnePairFctn and 
AliHBTTwoPairFctn classes. They define pure virtual 
methods  

• ProcessSameEventParticles  
• ProcessDiffEvenOarticles  
• Init 
• WriteFunction 

The first two of these methods differ in number of 
input parameters. AliHBTOnePairFctn requires one-pair 
whereas  AliHBTTwoPairFctn needs two pairs . 

All functionality that is dependant on function 
dimension is implemented in AliHBTFunction1D, 
AliHBTFunction2D and AliHBTFunction3D classes, 
which in turn inherit from AliHBTFunction class. 
AliHBTFunction class implements methods common for 
all functions and fixes user interface for (re)naming, 
writing, resetting, scaling, etc. routines.  

The classes that constitute the bottom layer of the 
diagram are base ones for concretized user classes. 

 
Figure 1: Architecture: class dependence schema 

 
Figure 2: Correlation functions inheritance schema. In all classes AliHBT prefix is skipped. 
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Creating a new correlation function requires 
implementing only two methods in most cases:  

• double GetValue(AliHBTPair*)  
• TH1* GetResult() 

The first one calculates the correlated value for a pair 
and the second one returns a result histogram.  HBT -
Analyzer already implements a wide set of most 
common correlation functions like Qinv, QOut, QSide or 
QLong . 
 

4.1.2.  Monitoring functions 
Monitoring functions are designed to create 

distributions of particle and pair properties that are used 
in analysis. This functionality is especially desired when 
the user requires knowing the influence of applied cuts 
on a given distribution. Currently there are one- and two-
particle monitoring functions implemented in the HBT -
Analyzer.   

The inheritance tree of monitoring functions (Fig.3) is 
simpler than the hierarchy of correlation functions. 
There are no separate base classes for each dimension, 
since they would be irrelevant in this case. They would 
be completely empty with the definition of just one 
histogram each.  

All classes in Fig.3 are abstract and user functions 
must be derived from the leaf classes.  

 

4.2. Analysis object 

User can set six types of functions i.e. three types for 
correlation and monitoring each, namely for: 

• reconstructed tracks, 
• simulated particles, 
• reconstructed tracks and simulated particles. 

The last item corresponds mainly to resolution analysis 
but is also used in weight algorithms. Therefore, a more 
general term is used. In the real data analysis only 
reconstructed track functions are calculated. Two other 
types are used only in Monte–Carlo data analysis. 

The user triggers analysis by calling the Process  
method with an option indicating which data are to be 
used in the analysis: simulated, reconstructed or both. In 
the case of both being used simultaneously, the reader 
must ensure that nth particle corresponds to nth 
reconstructed track in a given event. 

In a general case, all particles are used in analysis and 
every particle is mixed with all the others. In order to 
speed up computation time, the user can set a pair-cut 
object in the analysis object that filters out pairs before 
passing them to functions. For optimization reasons this 
cut is checked progressively. The first check is 
performed immediately when the first particle is picked 
up. If the particle does not pass the check then it does not 
make sense to loop over all the other particles. The next 
check is performed when the second particle is picked 
from an event, and at last the pair properties are verified. 
Pair cut is designed in a way that allows checking the 
pair properties only without examining each particle in a 
pair to avoid repeating of the tests. 

In the case of non-identical particle analysis , or more 
generally, in the case of mutually exclusive cuts on 
individual particles (a particle cannot be accepted by 
both cuts) faster algorithm is used. In such case pre-
selection of particles is performed. In the outermost 
event loop all particles are checked if they pass any of 
the individual cuts in a pair. Pointers to particles that 
passed the first or second particle cut are stored in two 
separate arrays. Such pre-selected particles are mixed 
and numerators are filled.  Arrays of particles that passed 
a cut on second particle are buffered in a FIFO queue. 
Particles from the buffer are mixed with the array of first 
cut particles and denominators are filled. The size of the 
queue is adjustable by the user. The choice of mixing 
algorithm is made automatically by an analysis object on 
the basis of the particle-cut properties. 

One would think that the pre-selection technique is 
also faster in a general case and that it is enough to make 
sure that a particle is not mixed with itself. However, in 
this case the optimal way is particle selection on the 
level of reading (see section 4.3). 

4.3. Readers 

Reader is an object that provides data to analysis. 
HBT-Analyzer is easily customized to any input data 
format by creating a specialized reader that inherits from 
class AliHBTReader. This base class defines pure virtual 
interface that allows implementation of buffering as well 
as non-buffering readers, depending on particular user 
needs.  

The base reader class implements functionality for 
particle filtering at reading level. The user can set any 
number of particle cuts in a reader, and the particle is 
read only if it fulfills the criteria defined by any of them. 

It also has a feature that allows specifying multiple 
data sources, which can be sequentially read. Many 
analysis objects can use one reader instance, if needed. 

 
Figure 3: Monitoring functions class herarchy, 
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4.4. Cuts 

Currently the HBT-Analyzer implements two kinds of 
cuts: particle and pair cut.  Cut object defines the ranges 
of many properties that a particle or a pair may posses 
and it also defines a method, which performs the 
necessary check. However, usually a user wants to limit 
ranges only of a few properties. For speed and 
robustness reasons, the design presented in Fig. 4 was 
developed.  

The particle cut object has an array of pointers to 
particle base cuts (class AliHBTBaseCut). The number of 
entries in the array depends on the number of the 
properties set by the user. The base cut implements 
checks on a single property. It implements maximum 
and minimum values and a virtual method Pass that 
performs a range check of the value returned by pure 
virtual method GetValue. Implementation of a concrete 
base cut is very easy in most cases: it is enough to 
implement GetValue method. The HBT-Analyzer 
already implements a wide range of base particle cuts, 
and AliHBTBaseCut class has a comfortable interface for 
setting all of them. For example it is enough to invoke 
the SetPtRange(min,max) method and behind the scenes 
a proper base cut is created and configured. 

All objects, which have a member pointer to a particle 
cut, by default create an empty cut (class 
AliHBTEmptyParticleCut). This is a derived class of 
AliHBTParticleCut that accepts any particle. 

The pair cut follows the design of the particle cut. In 
addition to an array of pointers to the base pair cuts it 
has two pointers to particle cut, one for each particle in 
the pair. An empty pair cut is implemented as well. In 
addition, all objects that have a pair cut data member by 
default create the empty cut. 

4.5. Pair 

The pair object points to two particles and implements 
a set of methods for the calculation of pair properties. 
The pair buffers calculated values and intermediate 
results for performance reasons. This applies to the 

quantities whose computation is time consuming and 
also to quantities with a high reuse probability. A 
Boolean flag is used to mark the already calculated 
variables. To ensure that this mechanism works 
correctly, the pair internally sets and reads the values of 
its variables calling its own methods, instead of 
accessing the variables directly.  

Pair object points to another pair with swapped 
particles. The existence of this feature is connected with 
the mixing implementation: when particle A is mixed 
with B, swapped pair is not going to come. In non-
identical particle analysis their order is important, and 
pair cut may reject a pair while a reversed one would be 
accepted. In order to solve this problem, pair cut checks 
swapped pair as well, if a regular one is rejected. This 
solution automatically takes advantage of the buffering 
technique. 

5. SUMMARY AND FUTURE 
DEVELOPMENT PLANS 

HBT-Analyzer is a universal and robust tool for 
particle correlation analysis. It can be used by any 
experiment providing the proper reader object is 
implemented. The design ensures that it is very easy 
customizable and extendible to new functions and cuts.  

Special care is taken for the performance of the 
package. Several techniques like buffering, specialized 
mixing, and cuts with flexible lists of properties are 
used. 

ALICE successfully uses this tool in studies of 
detector and reconstruction software capabilities [6]. 
Design ensures that we are already prepared for real data 
analysis. Example plot is presented in Fig.5, where is 

Qinv correlation function for events generated with the 
Monte-Carlo generator (dots) and this function for tracks 
reconstructed with Alice Time Projection Chamber 
(squares) and Inner Tracking System (triangles). 

 
Figure 4: Particle cut – classes diagram 

 
Figure 5: Example results: Qinv correlation function for 
π+ π+ 
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The HBT -Analyzer is still being developed and 
extended. The main features that are planned for 
implementation in the near future are event cut, three 
particle and azimuthally sensitive analysis. Software and 
documentation are available on [7]. 
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