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The Collider Detector at Fermilab (CDF) records proton-antiproton collisions at center of mass energy of 2.0
TeV at the Tevatron collider. A new collider run, Run II, of the Tevatron started in April 2001. Increased
luminosity will result in about 1 PB of data recorded on tapes in the next two years. Currently the CDF
experiment has about 260 TB of data stored on tapes. This amount includes raw and reconstructed data and
their derivatives. The data storage and retrieval are managed by the CDF Data Handling (DH) system. This
system has been designed to accommodate the increased demands of the Run II environment and has proven
robust and reliable in providing reliable flow of data from the detector to the end user. This paper gives an
overview of the CDF Run II Data Handling system which has evolved significantly over the course of this year.
An outline of the future direction of the system is given.

1. INTRODUCTION

The Collider Detector at Fermilab (CDF) is a gen-
eral purpose detector at the Fermilab Tevatron [1].
The Tevatron, the world largest pp̄ collider with the
c.m.s. energy of about 2 TeV, has undergone a ma-
jor upgrade for Run II that started April 2001. The
CDF detector has been equipped with a new tracking
system, a TOF system, a new plug calorimeter and
luminosity counters. The muon system coverage has
been extended. The CDF trigger and DAQ systems
have been upgraded to accommodate 10× increase in
luminosity.

The experimental program at CDF includes search
for Higgs boson, precision measurements of elec-
troweak parameters, study of t-quark properties,
QCD at large Q2, heavy flavor physics and search for
phenomena beyond Standard Model.

During the first years of Run II the CDF collabora-
tion plans to record about 1 PB of data. This volume
is more than 20 times the volume of the previous data
recording, Run I. The sheer volume of data and in-
creased analysis activity due to collaboration growth
and extended physics potential constitute serious chal-
lenges for a data handling system. All data is accessed
multiple times during several years of active analysis.
Direct access storage devices (DASD) are not afford-
able for this data volume. Instead the data is archived
to sequential media. Any of the data can be retrieved
onto DASD into available space on a modified least
recently used (LRU) basis. Users access the data only
from disk.

The purpose of the DH system is to collect, orga-
nize, archive and then make available the data to user
analysis job.

∗for the CDF Data Handling group

2. THE DATA ACCESS ORGANIZATION

The CDF Run II data handling strategy is essen-
tially an evolution of the Run I approach of suc-
cessive filtering of events of interest from huge pri-
mary datasets produced at CDF production farm into
smaller sub-samples relevant for individual analyses.
The process of filtering of events and information
stored per each event continues until the samples used
to produce final physics results are obtained. These
final samples could be small enough to be held on disk.

CDF has adopted a hierarchical data organization
with the dataset at the highest level and runsection
at the lowest level of the structure. The dataset is the
collection of events passing pre-defined set of Level-3
paths (primary and secondary datasets) or other se-
lection criteria relevant for particular physics analysis
(tertiary or derived datasets). Level-3 path is defined
as AND of Level-1, Level-2 and Level-3 triggers.
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Figure 1: Data access hierarchy

There are 50 pre-defined primary datasets at CDF.
During the data taking events that belong to simi-
lar datasets are grouped into 8 streams. Grouping of
datasets into the streams is done in such a way that
event overlap between the streams is minimized and
the fraction of the stream in any dataset is not small.

Runsections are the time intervals of data taking for
which integrated luminosity is calculated. Typically,
a runsection is defined every 30 seconds of data tak-
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ing and contains on average 3,000 events. Events are
written to files of about 1 GB in size. No runsection
is split between two files. Groups of 10 GB or more
worth of files form filesets to optimize tape I/O.

At the beginning of the Run II the CDF was writing
data to partitioned AIT-2 tapes, one fileset per par-
tition. The individual data unit existing in the Data
Handling system was therefore a fileset and not a file.

Users access data by datasets following the datasets
→ filesets → files → runsections hierarchy. At the
same time data handling access to data followed
tape→filesets→files hierarchy. These two interlacing
access patterns are shown in Figure 1.

2.1. Data Flow

During data taking, the Consumer-Server/Logger
(CSL) [2] receives events from the Level-3 PC farm
at 20 MB/sec (75 Hz×250 kB/event) and logs files to
dual ported SCSI RAID array disks at 20 MB/sec.
These functions are performed on b0dau32, an SGI
2200 server dedicated to the CSL and located in CDF
assembly building. A fileset-tape daemon running
on another identical SGI 2200, fcdfsgi1, located in
Feynman Computer Center, forms files into filesets
and logs them to Mass Storage System (MSS) using
the Enstore [4] interface layer that provides access to
network-attached tape drives in the STK robotic tape
library.

Once the data are on tape and the calibrations are
defined, the raw data are fed to the CDF Production
Farm [3] where they are reconstructed. After produc-
tion, the data are split into the 50 primary datasets.
These datasets are written to tapes. The average Pro-
duction Farm I/O throughput is about 30 MB/sec.

The primary datasets are split into secondary
datasets of interest for the physics analysis groups.
Users create tertiary datasets or n-tuples using sec-
ondary datasets as inputs. Figure 2 shows the amount
of raw and produced data logged to tape at CDF since
the beginning of Run II. Some tapes containing older
produced data were recycled to free up media.

2.2. Data and Software Characteristics

Some characteristics of the CDF data and analysis
software:

• ROOT I/O as persistency mechanism

• Typical raw event size is 250 kB

• Typical produced event size is 350 kB, in DST
format (raw banks are kept)

• PAD format or mini-DST format, ultimate event
size 50-100 kB

• N-tuple format 10-30 kB/event
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CDF Run II Data Logging March 2001 - March 2003

Figure 2: Raw and produced data at CDF since the
beginning of Run II
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Figure 3: The components of the CDF Data Handling
system

• Typical dataset size is 107 events

• Typical analysis job runs at 5 Hz on a 1 GHz
PIII corresponding to few MB/sec input rate

• Analysis jobs are CPU rather than network or
I/O bound over Fast Ethernet

3. CDF DATA HANDLING
INFRASTRUCTURE

The DH system at CDF has several distinct com-
ponents (Figure 3) each of which has a well-defined
interface.

User specifies a request for data by dataset or other
selection criteria based on meta-data information as-
sociated with the dataset, fileset or file via talk-to to a
special DHInput module. The DHInput module trans-
lates the request into a list of filesets using information
available in the Data File Catalog via DB access layer
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provided by DataFileDB package. The list of filesets
is passed to a client API of the disk cache manager.
The client software contacts the disk cache manager
server process to query the status of filesets in the list.
The filesets available in the disk cache are processed
while separate staging jobs are launched to copy miss-
ing filesets from MSS to disk.

Raw and produced data are put to tape by data log-
ging daemons that currently write directly into MSS
using Enstore interface.

3.1. DH I/O modules

An object oriented analysis framework, AC++ [5]
jointly developed by BaBar and CDF provides hooks
to plug in high-level user interfaces to Data Handling
system – DHInput/DHOutput modules. The low-
level API, the means to open, read and define internal
structure of the data files is provided by the Event
Data Model [6]. The DHInput provides fast naviga-
tion through input data made possible by the direct
access ROOT format of the CDF data.

The DHOutput module writes out ANSI named
files furnished with begin run record, empty runsec-
tions records, necessary for luminosity calculations,
and makes entries in the Data File Catalog.

3.2. Data File Catalog

The Data File Catalog is a relational database
that contains information about CDF datasets [7]. It
also contains physics-related bookkeeping information
such as data quality, triggers and filters used, average
and integrated luminosity, dynamic pre-scales values,
etc. The data access granularity of the DFC is a run-
section, i.e. a group of events rather than individual
events. The DFC table structure reflects CDF data
hierarchy depicted in Figure 1.

The DFC tables store information about physical
entities existing in the Data Handling system. Such
entities are Dataset, Tape, Fileset, File and Runsec-
tion. Each entity has a corresponding primary table.
The primary DFC tables are shown in Table I

Entity Database table

Dataset CDF2_DATASETS

Tape CDF2_TAPES

Fileset CDF2_FILESETS

File CDF2_FILES

Runsection CDF2_RUNSECTIONS

Table I Primary Data File Catalog tables

Besides these primary tables there are secondary ta-
bles. These tables either keep certain relation between
units, like for example parentage of the datasets or

they keep history of changes, so called history tables,
or they keep auxiliary entities like ranges or statuses
or descriptions. There are 10 such tables (See Table
II)

Purpose table name

used to book dataset CDF2_DATASET_REGISTRIES

dataset parentage CDF2_PARENT_DATASETS

status table CDF2_DATASET_STATUSES

production version CDF2_PROD_VERSION_DESCS

used to create dataset
runsection ranges CDF2_RUNSECTION_RANGES

in a file
trigger prescales CDF2_FILE_LIVETIMES

dynamic trigger prescales CDF2_RUNSECTION_LIVETIMES

luminosity history CDF2_RUNSECTION_LUMINOSITIES

data quality bit description CDF2_DATA_QUALITY_DESCS

tape pool CDF2_TAPEPOOLS

Table II Secondary Data File Catalog tables

Data File Catalog defines the following primary re-
lationships among the entities:

• a dataset has zero or more parent datasets

• a dataset contains zero or more filesets

• a dataset is contained on one or more tapes

• tape pool may have zero or more tapes

• a tape has one parent tape pool

• a fileset has one parent dataset

• a fileset contains one or more files

• a file has one parent fileset

• a file has one parent dataset

• a file contains one or more runsection range

• a file contains zero or more average prescales

• a runsection contains zero or more dynamic
prescales (livetimes)

There exists an Oracle implementation of the DFC
tables used at Fermilab to keep track of centrally pro-
duced as well as secondary user data. There is also
mSQL implementation of the DFC that can be set up
and run at remote institutions if for some reasons ei-
ther use of DFC located at Fermilab via network or
installation and maintenance of Oracle DFC replica
are not possible. Oracle and mSQL implementations
are identical with the exception of latter not having
integrity constraints and database triggers. Integrity
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constraints and the functionality of triggers are em-
bedded in the DataFileDB library, a C++ DB access
API. Recently the support for mySQL implementation
of the DFC has been added.

3.3. DataFileDB API

The information stored in the DFC is presented to
the data processing algorithms as transient objects
which are retrieved using compound keys. The man-
agement of mapping of persistent data to transient
objects is provided by the common database interface
manager layer[8]. This layer exists between the al-
gorithm code and the code which reads directly from
database tables. At the persistent storage end, it al-
lows multiple back-end mapping classes to be plugged
in and identified as data sources by character string
at the run time. At the user end, it provides a
put/get/update/delete interface on top of a transient
class for storage/retrieval/change/removal of objects
of this class using a key.

The mapping object creates a transient object from
the data stored in the DFC using the key. Objects are
cached by keys to prevent multiple database accesses
from different algorithms for the same data.

The DBManager[8] has two APIs. The back-
end persistent-to-transient mapping API, IOPack-
age, is an abstract base class. In order to create
new persistent-to-transient mapping class, or Map-
per class, one has to derive this class from IOPack-
age. The user code sees the front-end API as template
based. Transient classes are used as the template in-
stantiation parameters of the Manager<object,key>
class. The Manager<object,key> class has methods
such as put, get, update and remove to manipulate
transient objects.

The DataFileDB [7] package is built on the top of
DBManager and provides all the code needed to ma-
nipulate the DFC from a C++ program. It contains
an implementation of the transient object classes,
their associated keys and Mapper classes. There are
three Mapper classes for each transient class corre-
sponding to the three supported underlying relational
database implementations – Oracle (using OCI and
OTL libraries), mSQL and mySQL. Information from
any supported database implementation can be ma-
nipulated without code changes, the source database
can be selected at the run time.

There are six classes representing rows of the DFC
tables. Each of these classes, so called row-classes,
has an interface that allows users to view the infor-
mation held inside an object of the class. Many of
these objects contain the data collected from the sec-
ondary DFC tables like parent datasets or runsection
ranges. Each transient object class has an associated
key object class. The key object defines the WHERE
clause of the SQL statement emitted by the Mapper

back-end implementation for the corresponding tran-
sient object.

Some of the row-objects have hierarchical views as-
sociated with them. The hierarchical views make calls
down to DBManager classes which perform connec-
tions to the database to do put, get, update or re-
move queries. E.g., the code to retrieve all the files
belonging to the dataset, identified by dataset name
identifier aphysr looks like this:

// make connection to database identified
// by key "prd_dfc"

DFCFileCatalogNode fc("dfc_prd");
// key class associated with file

DFCFileKey key;
key.setDatasetNameID("aphysr");

// typedef std::vector<DFCFile> DFCFiles;
// typedef Handle<DFCFiles> DFCFiles_var;

DFCFiles_var files;
fc.findFiles(key,files);

The findFiles method of hierarchical view
DFCFileCatalogNode instantiates Manager provided
by DBManager API with appropriate template param-
eters and arguments:

DFCFiles_mgr m("dfc_prd","DFCFiles");
m.get(key,files);

The front-end API is in DFCFiles_mgr class which
is typedef Manager< DFCFiles,DFCFileKey >.
The argument ”dfc prd” identifies the entire set of
classes such as OTL or mSQL or mySQL Mappers
to be used to perform data base operation. An
ASCII text configuration file associates this string
with the real database instance by including user,
password, node name and class set name. The
second argument instructs IOPackage factory which
particular Mapper sub-class to instantiate. The
object returned from the API is managed by a smart
pointer (Handle<DFCFiles>).

3.4. Disk Cache Management

One of the central components of the CDF DH sys-
tem is the Disk Inventory Manager (DIM) [9]. It acts
as read/write cache in front of the MSS. The primary
function of the DIM is to cache data from the tape
library onto a large collection of shared disks, sec-
ondary functions include automating the writing of
new filesets onto tape, handling quotas for space and
reservation management.

The unit of space management is a fileset. DIM
keeps track of fileset status and has no knowledge of
datasets as such. This serves to decouple the manager
from database system. The DIM is a client-server ap-
plication with the communication between client and
server via TCP/IP sockets.
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Figure 4: Data volumes staged from tape on legacy DH system vs time

The server daemon is a multi-threaded program
written to the POSIX C API using the worker pool
model. For better scalability it uses a dynamic thread-
ing system , starting more threads under load and
eliminating them when the load is reduced. The
caching mechanism scores each fileset thet is not being
reserved by users, just arrived or marked static based
on reservations, time on disk and time since last us-
age. It deletes the fileset with the lowest score to make
room for newly requested fileset, an LRU algorithm.

The initial design of the central analysis system was
based on the idea of tight storage and CPU connec-
tion. The large computing machine, a SGI Origin 2000
with 128 300 Mhz MIPS R12000 CPUs, fcdfsgi2, has
been purchased and commissioned at the end of 1999.
A 12 TB disk cache pool of Fiber Channel SCSI disk
RAID arrays is managed by the DIM.

The DIM has originally been designed to work
with attached disks on a large SMP. The SMP-centric
model was first envisioned for Run II in 1998. In later
revisions the model’s inflexibility, cost/performance
considerations and single source upgrades were ac-
knowledged and an extension towards incorporating
commodity PCs and network distributed IDE RAID
based disk storage was adopted

While network nature of DIM allows it to handle
network-attached storage, it has never been developed
to fully support distributed caching.

The CDF DH group evaluated an effort required to
support DIM in distributed environment and decided
in favor of adopting different cache layer – dCache
[10].

dCache is a front-end disk cache for the large

MSS. Originally conceived at DESY, dCache has been
jointly developed by DESY and Fermilab Computing
Division (CD) for several years now. dCache uses net-
work mounted disks to implement distributed data
caches with user authentication. dCache provides file-
based staging, making concept of fileset obsolete.

A client, requesting a file, contacts a dCache admin
node and is authenticated. If the file is in any of the
cache pools managed by the dCache admin server, the
client is redirected to the pool containing the file. If
the file is not on any of the pools is is staged from
tape to pool with available disk space and client is
redirected to that pool.

3.5. Mass Storage System

CDF has started Run II with a MSS based on
an AML-2 robotic tape library with cheap commod-
ity AIT-2 tape drives, SONY-CDX500C, directly at-
tached to main CDF data logger and central analysis
SMP, fcdfsgi2. Interface to MSS was written using
CDF-specific software. The choice of tape technology
turned out to be more difficult than anticipated.

In May 2002, this tape system has been replaced
with a Enstore Mass Storage System with dual STK
Powderhorn 9310 robotic libraries equipped with 10
network-attached data center quality tape drives STK
T9940A, 10 MB/sec read/write rate each [4]. CDF
Enstore MSS is called CDFEN.

All existing data were copied from AIT-2 tapes to
STK cartridges using the DH system running on the
central analysis SMP.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THKT005 ePrint physics/0306060



This year, STK T9940A are being replaced
with STK T9940B tape drives. The total
I/O rate of CDF tape system system becomes
10x30 MB/sec=300 MB/sec. This bandwidth is
shared between raw data logging, Production Farms
and a 600 CPU Central Analysis Farm (CAF) [11] for
user analysis and legacy SMP system. Total data ca-
pacity is about 2 PB with 200 GB/tape cartridges.
The tape system I/O rate and volume capacity are
sufficient for the Run IIa luminosity goals.

Data delivery became stable and reliable. Figure 4
illustrates increased read rate from Enstore on legacy
DH system.

4. CURRENT DEVELOPMENT

Having achieved operational stability and reliable
data delivery at Fermilab, the CDF Data Handling
group is looking forward to further development of the
Data Handling system towards providing data flow to
world-wide distributed computing resources.

The CDF has evaluated the D0 Data Handling sys-
tem based on Sequential Access through Meta Data
(SAM) system [13]. SAM is a complete Data Handling
system that provides:

• Meta-data file catalog,

• Clustering the data onto tertiary storage in the
manner corresponding to access pattern

• Caching frequently accessed data on disk or
tape,

• Organization of data request to minimize tape
mounts

• A resource manager that estimates resources re-
quired for the file requests before they are sub-
mitted and, with this information, makes ad-
ministrative decisions concerning data delivery
priorities

The SAM infrastructure consists of a central data
repository and a number of SAM-stations. A station
consists of one or more computer nodes that share
a data cache managed by one or more station mas-
ter nodes and accessible to consumer/producer nodes.
Users submit jobs to computer in a stations specifying
the project their job will access. Using the file catalog
meta-data, SAM translates the request into the list of
files. If the requested files are available in the station
cache they are sent to the requesting job. If some files
are missing in the local cache, a station, following a set
of rules will request the data from central repository
or from neighboring stations.

By design, the SAM is inherently a scalable, flexi-
ble Data Handling solution specifically tailored to ac-
commodate distributed computing resources. This re-
alization and the initial success of integrating SAM

into CDF software [12] resulted in creation of CDF
SAM project in the framework of joint D0/CDF/CD
project.

The outcome of this project was a modified file cat-
alog SAM schema that would allow to absorb the CDF
Data File Catalog into SAM and interfacing of SAM
data access layer with dCache for reading and writing
data.

5. CONCLUSION

The CDF Collaboration has changed significantly
its computing analysis system towards using globally
distributed commodity CPU resources and network
accessible IDE RAID arrays for disk caching.

The choice of associated software and hardware
components seems to be paying off remarkably well:

• The Enstore generic interface to tape system
that utilizes data center quality drives allowed
to achieve stable and robust operations in a very
short period of time

• The network disk caching management layer,
dCache, runs successfully on commodity Linux
file servers managing about 100 TB of dis-
tributed cache pools achieving unprecedented
TB/hour data delivery rate to analysis jobs run-
ning on CAF.

• An adaptation of the SAM as the first step to-
wards GRID for CDF that ultimately allows
off-site users to fully utilize their computing re-
sources

Most importantly CDF has a Data Handling strat-
egy that allows scaling with accumulated luminosity
and increasing number CPUs and disks resources.

The CDF Detector has achieved stable data taking.
Stable detector operation complemented by a reliable
Data Handling system will result in high quality and
timely physics results. The first CDF Run II paper is
in print, CDF is back in business.
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