

Use of a Generic Identification Scheme Connecting Events and Detector
Description in the ATLAS Experiment

C. Arnault, A. Schaffer
LAL, 91898 Orsay FRANCE

High energy physics detectors can be described hierarchically from the different subsystems to their divisions in r, phi, theta and to the
individual readout channels. An identification schema that follows the logical decomposition of the ATLAS detector has been
introduced allowing identification of individual readout channels as well as other parts of the detector, in particular detector elements.
These identifiers provide a sort of “glue” allowing, for example, the connection of raw event data to their detector description for
position calculation or alignment corrections, as well as fast access to subsets of the event data for event trigger selection. There are two
important requirements on the software to support such an identification scheme. First is the possibility to formally specify these
identifiers in terms of their structure and allowed values. And second is to generate different forms of the identifiers optimised in terms
of access efficiency to information content, compactness or search key efficiency. We present here the generic toolkit developed in the
context of the ATLAS experiment to primarily provide the identification of the readout channels and detector elements. The architecture
of the toolkit is decomposed into three parts: an XML-based dictionary containing the formal specification of a particular range of
identifiers, a set of various identifier classes (offering various level of compaction), and finally a set of “helper” classes, specific for each
detector system, which serve as intermediaries between the dictionary and the identifier classes to create, manipulate and interpret the
identifiers. This architecture will be described as well as the various applications of this identification scheme.

1. OVERVIEW

The data coming from a HEP detector requires access to
its “detector description” information in order to be used.
For example, one needs to calibrate the individual readout
channel responses, calculate their positions and correct for
misalignment. This can be done in many ways, but
ultimately this relies on a key-lookup to match the readout
data with its detector description data.

The solution that we have chosen in the ATLAS
experiment consists of an identification scheme that follows
the logical hierarchical structure of the detector. For
example, our silicon strip detector is composed of a barrel
and two end-caps, and several layers of two-sided modules
distributed in η (the cylindrical z co-ordinate) and φ. So we
have formulated an identifier specification of each silicon
strip as:

• Inner Detector / SCT / barrel or endcap / layer /

phi_module / eta_module / side / strip

The hierarchical structure allows one to extract identifiers

with the full or partial hierarchy – readout ids correspond to
the full hierarchy. In ATLAS we have found the following
“three-level” model useful:

• detector subsystem à detector elements à readout

channels

where for the silicon detector one would have SCT à wafer
(side) à strip. Thus we are interested in “projecting out”
from the specification the identifiers for the detector
subsystem, detector elements and readout channels. This
three-level model is reflected in both the event and detector
description models. Identifiers are used as look-ups both
within and between these models.

The software infrastructure to support this identification
system consists of:

• an identifier dictionary that allows one to

capture and query different identifier
specifications and to extract various forms of
identifiers,

• various identifiers, e.g. expanded, compact or
hash, and

• identifier ‘helpers” that are specific to each
detector system and simplify the interactions
with the dictionary in terms of
creation/manipulation of the identifiers

The basic infrastructure has been in place since 1998. A

complete specification of the identifiers for each detector
system was completed in 2001, using a first implementation
with expanded identifiers1. Since 2002, we have been
migrating to the use of an identifier dictionary, which allows
the use of compact and hash identifiers that are more
efficient in terms of space and look-up speed.

2. IDENTIFIER AND RANGE CLASSES

We are currently using three forms of identifiers:

• Expanded – internal representation is a vector<short

int>
• Compact – 32 bit representation, the values of each

level are bit packed
• Hash – 32 bit representation, transformation of a set

of compact ids to numbers from 0 to N-1, allows
constant-time table look-up

1 In the form of std::vector<short>, i.e. a short for each level of an
identifier.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THJT008 ePrint physics/0306141

The expanded form is primarily used internally within the
infrastructure classes, whereas the latter two forms are
widely used by clients in the ATLAS offline software. The
compact id, which contains the information of the identifier
in a compact form, can be used as a key in a binary look-up.
Hash ids have been introduced to reduce this to a constant-
time look-up. The hash ids are “optimal” in the sense that
they take the values of 0 to N-1 for a specific set of N
identifiers. This is possible when one works within a certain
“context”, and is facilitated by the identifier dictionary that
allows one to enumerate all possible values for a particular
context. For the example given above, the set of detector
elements for a given sub-detector can be enumerated and
each assigned its “hash” id that is simply a number from 0 to
N-1 for N elements. One may then use this hash id in a table
look-up.

We have introduced two classes to “capture” an identifier
specification. A Range class contains the allowed values at
each level for a region of valid identifiers. For each level, the
Range maintains either the minimum and maximum or an
enumeration of values, where min/max can be wild-carded.
For example, a region of valid identifiers for the SCT
example above, can be given as:

• 2 / 2 / -2, 2 / 0 : 8 / 0 : 51 / 0 / 0 : 1 / 0 : 767

• which means : Inner Detector / SCT / both endcaps /

layers 0 to 8 / phi_modules 0 to 51 / eta_module 0 /
sides 0,1 / strips 0 to 767

There is a MultiRange class that extends this kind of

expression by specifying an “or-ed” expression of several
individual ranges. It should be noted that while a Range
always describes a contiguous set of values for each
specified field, the MultiRange permits the specification of
non-contiguous subsets. In general, a MultiRange captures
the specification of identifiers for a complete sub-detector.
The MultiRange provides a validity check for any identifier,
and as well iterators over all identifiers in the specification.

3. IDENTIFIER DICTIONARY

The identifier dictionary formally defines a logical

hierarchy and provides a name for each of the hierarchy
levels. The identifier dictionary describes the set of non-
overlapping regions of valid values for the hierarchy levels,
where each region corresponds to a Range object in memory
and the full dictionary to a MultiRange object. The
dictionary also allows the symbolic description of identifier
fields (similar to C++ enumerated types, e.g. barrel or
endcap). Finally, the regions may be divided into separate
dictionaries for convenience, where a manager groups them
together. This used for sub-detectors where clients tend to be
interested in only a sub-set of identifiers belonging to a
particular sub-detector. These sub-sets are manipulated by

the id helpers (see below) and maintained by separate groups
or people.

A dictionary has its primary description in the form of an
XML file, which is modified by the maintainers. A DOM
XML parser2 converts this dictionary into a IdDictDictionary
object with an API providing the follow operations:

• Queries on regions or symbolic fields
• Generation of a MultiRange object for a given

selection
• Generate a packed (32 bit) representation from an

expanded identifier
• Unpack the compact representation into an expanded

identifier.

One can query the dictionary for the names of its levels or
fields, or their possible values. The MultiRange generation
can be for the whole dictionary, or one may select sub-set of
regions and/or the desired depth of the identifier hierarchy.

The packing/unpacking operators follow an algorithm that
minimises the binary representation. The basic algorithm
works its way down the hierarchy specification and “re-
uses” bits for non-overlapping sub-ranges. This has been
combined with an “over-ride” mechanism where one may
specify that a subset of regions should have a common bit-
mapping. This allows efficient mask-and-shift operations to
be performed within the sub-region.

Finally, there is a “tag” attribute to the region XML
element that allows the specification and selection of
different versions of the valid ranges of identifier values.

A (limited) example of a dictionary is:

<IdDictionary name="InnerDetector" >

 <!--
 Start by defining some symbolic labels used
 for some field (other fields will be specified
 by numeric ranges)
 -->

 <field name="part">
 <label name="Pixel" value="1" />
 <label name="SCT" value="2" />
 <label name="TRT" value="3" />
 </field>

 <field name="barrel_endcap">
 <label name="negative_endcap" value="-2" />
 <label name="negative_barrel" value="-1" />
 <label name="barrel" value="0" />
 <label name="positive_barrel" value="+1" />

2 We have worked with both XercesC and Expat parsers, and
currently use Expat.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THJT008 ePrint physics/0306141

 <label name="positive_endcap" value="+2" />
 </field>

 <subregion name="SCT_barrel">
 <range field="part" value="SCT" />
 <range field="barrel_endcap" value="barrel" />
 </subregion>

 <subregion name="SCT_endcap">
 <range field="part" value="SCT" />
 <range field="barrel_endcap"
 values="negative_endcap positive_endcap" />
 </subregion>

 <subregion name="SCT_eta_module">
 <range field="wafer" minvalue="0"
 maxvalue="1" />
 <range field="strip" minvalue="0"
 maxvalue="767" />
 </subregion>

 <subregion name=
 "SCT_phi_negative_barrel_module">
 <range field="eta_module" minvalue="-6"
 maxvalue="-1" />
 <reference subregion="SCT_eta_module" />
 </subregion>

 <region>
 <reference subregion="SCT_barrel" />
 <range field="layer" value="0" />
 <range field="phi_module" minvalue="0"
 maxvalue="31" />
 <reference subregion=
 "SCT_phi_negative_barrel_module" />
 </region>

 <region>
 <reference subregion="SCT_barrel" />
 <range field="layer" value="1" />
 <range field="phi_module" minvalue="0"
 maxvalue="39" />
 <reference subregion=
 "SCT_phi_negative_barrel_module" />
 </region>
</IdDictionary>

The hierarchy levels are defined either explicitly as field

XML elements, or implicitly as one defines the region XML
elements levels. In the latter case, one defines the allowed
values for each level with a range XML element, and the
field name is one of its attributes. We have also introduced
subregion XML elements for shared partial specification of
the hierarchy that may be referenced by different regions.

4. ID HELPERS

Identifier helper classes have been developed for each

detector system to simplify the interactions with the
dictionary. They localize the place in the software where
identifiers may be created or decoded. This guarantees a
coherent definition, which may change with the version of
the geometry description, and allows for an evolution of the
packing alrgoirthm.

Each helper is tailored to the specific detector identifiers,
for example for decoding the specific fields. The helpers are
initialized from their corresponding dictionary. It is the
helpers that transform a set of compact identifiers into their
corresponding hash identifiers, by simply enumerating the
set, and they in general cache the table of identifiers for fast
conversion.

The helpers define one or more sets of hash identifiers, for
example for detector elements and readout channels as
described above, by selection on which regions and/or to a
specific depth in the hierarchy. The helpers can provide
iterators over the set of identifiers. Finally, the helpers can
provide fast access to neighbouring identifiers since this
knowledge can be obtained from the dictionary, where one
can specify that some hierarchy levels “wrap-around” in 2π,
for example for the cylindrical ϕ coordinate.

5. IMPACT ON THE ATLAS DATA MODEL

Identifiers in ATLAS are used to identify offline software

the individual readout channels3 and detector elements,
which correspond to groupings of readout channels. This has
led ATLAS to introduce a two-level container for event data:

• container à collection à T:Digit

where the collection granularity corresponds to the
detector elements, which is defined differently for each sub-
detector. The access to individual collections is done via the
hash identifiers, which as well provide the connection to
detector description information.

This model is currently being used by High Level Trigger
studies (see [1]) where a fast selection is performed after a
reconstruction within a region-of-interest (ROI). For
example,

• ROI from level 1 trigger à region in ∆η∆ϕ à hash

ids à collections to be decoded from online read-out

3 Typically there is a separate online identification scheme
corresponding to the electronics. The online ids are mapped to
these “offline” ids fairly early on in the software chain.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THJT008 ePrint physics/0306141

6. CONCLUSIONS

We have presented here an identification scheme

comprised of a specification language (based on XML) and
an associated C++ toolkit. This is being used by the ATLAS
experiment for generating and manipulating various forms of
identifiers which are used throughout the event and detector
description models, as well as acting as the glue which
connects the two models. The full deployment of compact
and hash identifiers is currently on going. And better

understanding of the performance issues will come in the
near future.

References

[1] M. Grothe, et al., Architecture of the ATLAS High
Level Trigger Event Selection Software : CHEP03 :
PSNWEPT004

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THJT008 ePrint physics/0306141

