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High energy physics detectors can be described hierarchically from the different subsystems to their divisions in r, phi, theta and to the 
individual readout channels. An identification schema that follows the logical decomposition of the ATLAS detector has been 
introduced allowing identification of individual readout channels as well as other parts of the detector, in particular detector elements. 
These identifiers provide a sort of “glue” allowing, for example, the connection of raw event data to their detector description for 
position calculation or alignment corrections, as well as fast access to subsets of the event data for event trigger selection. There are two 
important requirements on the software to support such an identification scheme. First is the possibility to formally specify these 
identifiers in terms of their structure and allowed values. And second is to generate different forms of the identifiers optimised in terms 
of access efficiency to information content, compactness or search key efficiency. We present here the generic toolkit developed in the 
context of the ATLAS experiment to primarily provide the identification of the readout channels and detector elements. The architecture 
of the toolkit is decomposed into three parts: an XML-based dictionary containing the formal specification of a particular range of 
identifiers, a set of various identifier classes (offering various level of compaction), and finally a set of “helper” classes, specific for each 
detector system, which serve as intermediaries between the dictionary and the identifier classes to create, manipulate and interpret the 
identifiers. This architecture will be described as well as the various applications of this identification scheme. 

 

1. OVERVIEW  

The data coming from a HEP detector requires access to 
its “detector description” information in order to be used. 
For example, one needs to calibrate the individual readout 
channel responses, calculate their positions and correct for 
misalignment. This can be done in many ways, but 
ultimately this relies on a key-lookup to match the readout 
data with its detector description data.  

The solution that we have chosen in the ATLAS 
experiment consists of an identification scheme that follows 
the logical hierarchical structure of the detector. For 
example, our silicon strip detector is composed of a barrel 
and two end-caps, and several layers of two-sided modules 
distributed in η (the cylindrical z co-ordinate) and φ.  So we 
have formulated an identifier specification of each silicon 
strip as: 

 
• Inner Detector / SCT / barrel or endcap / layer / 

phi_module / eta_module / side / strip 
 
The hierarchical structure allows one to extract identifiers 

with the full or partial hierarchy – readout ids correspond to 
the full hierarchy. In ATLAS we have found the following 
“three-level” model useful: 

 
• detector subsystem à detector elements à readout 

channels  
 
where for the silicon detector one would have SCT à wafer 
(side) à strip. Thus we are interested in “projecting out” 
from the specification the identifiers for the detector 
subsystem, detector elements and readout channels. This 
three-level model is  reflected in both the event and detector 
description models. Identifiers are used as look-ups both 
within and between these models. 

The software infrastructure to support this identification 
system consists of: 

 
• an identifier dictionary that allows one to 

capture and query different identifier 
specifications and to extract various forms of 
identifiers, 

• various identifiers, e.g. expanded, compact or 
hash, and 

• identifier ‘helpers” that are specific to each 
detector system and simplify the interactions 
with the dictionary in terms of 
creation/manipulation of the identifiers 

 
The basic infrastructure has been in place since 1998. A 

complete specification of the identifiers for each detector 
system was completed in 2001, using a first implementation 
with expanded identifiers1. Since 2002, we have been 
migrating to the use of an identifier dictionary, which allows 
the use of compact and hash identifiers that are more 
efficient in terms of space and look-up speed. 

 

2. IDENTIFIER AND RANGE CLASSES 

 
We are currently using three forms of identifiers: 

 
• Expanded – internal representation is a vector<short 

int> 
• Compact – 32 bit representation, the values of each 

level are bit packed 
• Hash – 32 bit representation, transformation of a set 

of compact ids to numbers from 0 to N-1, allows 
constant-time table look-up 

 

                                                 
1 In the form of std::vector<short>, i.e. a short for each level of an 
identifier. 
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The expanded form is primarily used internally within the 
infrastructure classes, whereas the latter two forms are 
widely used by clients in the ATLAS offline software. The 
compact id, which contains the information of the identifier 
in a compact form, can be used as a key in a binary look-up. 
Hash ids have been introduced to reduce this to a constant-
time look-up. The hash ids are “optimal” in the sense that 
they take the values of 0 to N-1 for a specific set of N 
identifiers. This is possible when one works within a certain 
“context”, and is facilitated by the identifier dictionary that 
allows one to enumerate all possible values for a particular 
context. For the example given above, the set of detector 
elements for a given sub-detector can be enumerated and 
each assigned its “hash” id that is simply a number from 0 to 
N-1 for N elements. One may then use this hash id in a table 
look-up.  
 

We have introduced two classes to “capture” an identifier 
specification. A Range class contains the allowed values at 
each level for a region of valid identifiers. For each level, the 
Range maintains either the minimum and maximum or an 
enumeration of values, where min/max can be wild-carded. 
For example, a region of valid identifiers for the SCT 
example above, can be given as: 
 

• 2 / 2 / -2, 2 / 0 : 8 / 0 : 51 / 0 /  0 : 1 / 0 : 767 
 
• which means : Inner Detector / SCT / both endcaps / 

layers 0 to 8 / phi_modules 0 to 51 / eta_module 0 / 
sides 0,1 / strips 0 to 767 

 
There is a MultiRange class that extends this kind of 

expression by specifying an “or-ed” expression of several 
individual ranges. It should be noted that while a Range 
always describes a contiguous set of values for each 
specified field, the MultiRange permits the specification of 
non-contiguous subsets. In general, a MultiRange captures 
the specification of identifiers for a complete sub-detector. 
The MultiRange provides a validity check for any identifier, 
and as well iterators over all identifiers in the specification.  
 

3. IDENTIFIER DICTIONARY 

 
The identifier dictionary formally defines a logical 

hierarchy and provides a name for each of the hierarchy 
levels. The identifier dictionary describes the set of non-
overlapping regions of valid values for the hierarchy levels, 
where each region corresponds to a Range object in memory 
and the full dictionary to a MultiRange object. The 
dictionary also allows the symbolic description of identifier 
fields (similar to C++ enumerated types, e.g. barrel or 
endcap). Finally, the regions may be divided into separate 
dictionaries for convenience, where a manager groups them 
together. This used for sub-detectors where clients tend to be 
interested in only a sub-set of identifiers belonging  to a 
particular sub-detector. These sub-sets are manipulated by 

the id helpers (see below) and maintained by separate groups 
or people. 
 

A dictionary has its primary description in the form of an 
XML file, which is modified by the maintainers. A DOM 
XML parser2 converts this dictionary into a IdDictDictionary 
object with an API providing the follow operations: 

 
• Queries on regions or symbolic fields 
• Generation of a MultiRange object for a given 

selection 
• Generate a packed (32 bit) representation from an 

expanded identifier  
• Unpack the compact representation into an expanded 

identifier. 
 

One can query the dictionary for the names of its levels or 
fields, or their possible values. The MultiRange generation 
can be for the whole dictionary, or one may select sub-set of 
regions and/or the desired depth of the identifier hierarchy. 

The packing/unpacking operators follow an algorithm that 
minimises the binary representation. The basic algorithm 
works its way down the hierarchy specification and “re-
uses” bits for non-overlapping sub-ranges. This has been 
combined with an “over-ride” mechanism where one may 
specify that a subset of regions should have a common bit-
mapping. This allows efficient mask-and-shift operations to 
be performed within the sub-region. 

Finally, there is a “tag” attribute to the region XML 
element that allows the specification and selection of 
different versions of the valid ranges of identifier values. 

 
A (limited) example of a dictionary is: 

 
<IdDictionary name="InnerDetector" > 
 
  <!-- 
     Start by defining some symbolic labels used  
     for some field (other fields will be specified  
     by numeric ranges) 
   --> 
 
  <field name="part"> 
    <label name="Pixel" value="1" /> 
    <label name="SCT" value="2" /> 
    <label name="TRT" value="3" /> 
  </field> 
 
  <field name="barrel_endcap"> 
    <label name="negative_endcap" value="-2" /> 
    <label name="negative_barrel"  value="-1" /> 
    <label name="barrel"                  value="0"  /> 
    <label name="positive_barrel"   value="+1" /> 

                                                 
2 We have worked with both XercesC and Expat parsers, and 
currently use Expat. 
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    <label name="positive_endcap"  value="+2" /> 
  </field> 
 
  <subregion name="SCT_barrel"> 
    <range field="part" value="SCT" /> 
    <range field="barrel_endcap" value="barrel" /> 
  </subregion> 
 
  <subregion name="SCT_endcap"> 
    <range field="part" value="SCT" /> 
    <range field="barrel_endcap"  
      values="negative_endcap positive_endcap" /> 
  </subregion> 
 
  <subregion name="SCT_eta_module"> 
    <range field="wafer" minvalue="0"  
      maxvalue="1" /> 
    <range field="strip" minvalue="0"  
      maxvalue="767" /> 
  </subregion> 
 
  <subregion name= 
     "SCT_phi_negative_barrel_module"> 
    <range field="eta_module" minvalue="-6"  
      maxvalue="-1" /> 
    <reference subregion="SCT_eta_module" /> 
  </subregion> 
 
  <region> 
    <reference subregion="SCT_barrel" /> 
    <range field="layer" value="0" /> 
    <range field="phi_module" minvalue="0"  
      maxvalue="31" /> 
    <reference subregion= 
     "SCT_phi_negative_barrel_module" /> 
  </region> 
 
  <region> 
    <reference subregion="SCT_barrel" /> 
    <range field="layer" value="1" /> 
    <range field="phi_module" minvalue="0"  
      maxvalue="39" /> 
    <reference subregion= 
     "SCT_phi_negative_barrel_module" /> 
  </region> 
</IdDictionary> 

 
The hierarchy levels are defined either explicitly as field 

XML elements, or implicitly as one defines the region XML 
elements levels. In the latter case, one defines the allowed 
values for each level with a range XML element, and the 
field name is one of its attributes. We have also introduced 
subregion  XML elements for shared partial specification of 
the hierarchy that may be referenced by different regions. 
 
 

4. ID HELPERS 

 
Identifier helper classes have been developed for each 

detector system to simplify the interactions with the 
dictionary. They localize the place in the software where 
identifiers may be created or decoded. This guarantees a 
coherent definition, which may change with the version of 
the geometry description, and allows for an evolution of the 
packing alrgoirthm.  

Each helper is tailored to the specific detector identifiers, 
for example for decoding the specific fields. The helpers are 
initialized from their corresponding dictionary. It is the 
helpers that transform a set of compact identifiers into their 
corresponding hash identifiers, by simply enumerating the 
set, and they in general cache the table of identifiers for fast 
conversion.  

The helpers define one or more sets of hash identifiers, for 
example for detector elements and readout channels as 
described above, by selection on which regions and/or to a 
specific depth in the hierarchy. The helpers can provide 
iterators over the set of identifiers. Finally, the helpers can 
provide fast access to neighbouring identifiers since this 
knowledge can be obtained from the dictionary, where one 
can specify that some hierarchy levels “wrap-around” in 2π, 
for example for the cylindrical ϕ  coordinate. 
 

5. IMPACT ON THE ATLAS DATA MODEL 

 
Identifiers in ATLAS are used to identify offline software 

the individual readout channels3 and detector elements, 
which correspond to groupings of readout channels. This has 
led ATLAS to introduce a two-level container for event data: 

 
• container à collection à T:Digit 
 

where the collection granularity corresponds to the 
detector elements, which is defined differently for each sub-
detector. The access to individual collections is done via the 
hash identifiers, which as well provide the connection to 
detector description information. 
 

This model is currently being used by High Level Trigger 
studies (see [1]) where a fast selection is performed after a 
reconstruction within a region-of-interest (ROI). For 
example, 

 
• ROI from level 1 trigger à region in ∆η∆ϕ à hash 

ids à collections to be decoded from online read-out 
  

                                                 
3 Typically there is a separate online identification scheme 
corresponding to the electronics. The online ids are mapped to 
these “offline” ids fairly early on in the software chain. 
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6. CONCLUSIONS 

 
We have presented here an identification scheme 

comprised of a specification language (based on XML) and 
an associated C++ toolkit. This is being used by the ATLAS 
experiment for generating and manipulating various forms of 
identifiers which are used throughout the event and detector 
description models, as well as acting as the glue which 
connects the two models. The full deployment of compact 
and hash identifiers is currently on going. And better 

understanding of the performance issues will come in the 
near future. 
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