
Detector Description Framework in LHCb
Sébastien Ponce, Pere Mato Vila, Andrea Valassi
CERN, Geneva, Switzerland
Ivan Belyaev
ITEP, Moscow, Russia and
CERN, Geneva, Switzerland

The Gaudi architecture and framework are designed to provide a common infrastructure and environment for
simulation, filtering, reconstruction and analysis applications. In this context, a Detector Description Service
was developed in LHCb in order to also provide easy and coherent access to the description of the experimen-
tal apparatus. This service centralizes every information about the detector, including geometry, materials,
alignment, calibration, structure and controls. From the proof of concept given by the first functional imple-
mentation of this service late 2000, the Detector Description Service has grown and has become one of the major
components of the LHCb software, shared among all applications, including simulation, reconstruction, analysis
and visualization.
We describe here the full and functional implementation of the service. We stress the easiness of customization
and extension of the detector description by the user, on the seamless integration with condition databases in
order to handle time dependent data and on the choice of XML as a persistency back-end for LHCb Detector
data. We show how the detector description can be shared but still contains application specific data and keeps
at the same time several levels of granularity. We present several external tools which provide additional value
to the Detector Description Service like a dedicated, easy to use XML editor and different geometry checkers.
We finally give hints on how this service could evolve to be part of a common effort between all LHC experiments
that would aim at defining common Detector description tools at the level of the LCG project.

1. Introduction

This paper is a follow-up of a previous paper pre-
sented a CHEP’00 [1]. There was presented a very first
implementation of the LHCb framework for Detector
Description as well as ideas for the future development
of the project.

Since 2000, much progress was made and ideas have
been changed into actual software which is now in pro-
duction. We thus want to describe here the general
structure of the final framework and insist on the new
evolutions, particularly on the different possibilities of
extensions the user can use to adapt the framework to
her/his needs. We also describe how the framework
integrates with a condition database and the differ-
ent tools provided to ease the access and retrieval of
detector data.

All these topics are discussed in the following sec-
tions :

Section 2 gives an outline of the basics of the detec-
tor description framework, including the data it works
on and the way they are stored in both the transient
and the persistent representation.

Section 3 deals with the various extensions that
a user can make to the generic framework in order
to adapt it to her/his own needs. This includes the
usage of generic parameters, the definition of new C++

objects and the extension of the data schema itself.
Section 4 shows how a condition database can be

easily integrated to the framework in order to deal
with time/version varying data. It explains how the
impact on the end user is reduced to the very minimal.

Section 5 lists and quickly describes the different
tools provided to the end user to interface the frame-

work. These allow to easily edit data, check the de-
scribed geometry and visualize it together with event
data.

2. Detector Description Basics

The purpose of the detector description framework
is to store, access and process all data related to
the description of the detector and used by programs
like detector simulation, event reconstruction, physics
analysis, visualization, ...

2.1. Data Content

The description of the LHCb detector was split into
three parts in the LHCb framework, as depicted on
figure 1 :

• Geometry and Materials This first part con-
tains the classical physical description of the de-
tector. This encompasses the geometry itself as
well as the materials of the detector and their
properties. The description is very similar to
the Geant4 [2] approach, based on logical and
physical volumes so we will not detail it further
here.

• Structure of the detector This part consists
in an abstract hierarchical description of the el-
ements that compose the detector. The basic el-
ement here is naturally called Detector Element
and acts as a center of information for all data
dealing with the description of a given subpart

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint physics/0306089THJT007



EcalClusterCondition

MuonStationAlignment

VeloReadout

Condition

Conditions

DetElem

Calibration

Alignment
Readout

ConditionMuonStation

EcalCluster

Geometry
Info

*

Structure

Points to

Resolved on demand

Inherits from

LVolume Solid

Box

Sphere

Trap

PVolume Isotope Mixture

Element

Material

*

Geometry Material

Figure 1: LHCb Detector Description framework content.

of the detector. Among others, a detector ele-
ment has a pointer to the related geometry, the
calibration and alignment data and the readout
conditions. Note that detector elements can be
extended and adapted by the users as we’ll de-
scribe in more details in section 3.

• The detector conditions Conditions are ex-
tensible objects that can contain time/version
varying data. The extensibility is describe in
details in section 3 and is exactly identical to
the extensibility of detector elements. The
specific part of the conditions is actually the
time/version variance. A given data stored in
a condition object may thus have different val-
ues depending on time but also on versions. Ex-
amples of condition objects are data describing
the alignement of the detector, its calibration,
the slow control parameters, ... See section 4 for
more details.

The steering part in all this is the structure part.
Actually, every request to the detector description
framework has to start with the access to a Detec-
tor Element. Other data can then be reached from
there. It’s worth noticing that the granularity of the
memory loading of information is actually finer than
the detector element itself, as show on figure 1. Many
references in it are actually only loaded on demand.
The detail mechanism of the data access is described
in detail in the next section.

2.2. Transient Store mechanism

The access to the detector description data in a
Gaudi application follows the “transient store” mech-
anism of the Gaudi framework [3, 4, 5]. The transient
store is a place in memory where the detector elements
used by the application are loaded and cached. It is

a hierarchical, tree like structure where elements are
designated by paths, as in Unix file-systems.

The loading of detector elements into the transient
store is only done on demand and uses the mechanism
described in figure 2.

Service
Persistency

Data Service
Detector

LVolume
LVolume

LVolume

Geometry

Algorithm

Service
XML Conversion

ROOT Conversion
Service

Check
Presence Ask creation

Dispatch

Retrieve Pointer

Ask for
Object

Load
Cnv

Cnv
Cnv

Figure 2: Transient store mechanism in Gaudi.

Here is a sketch of what happens when a given data
is accessed :

• all starts when an “Algorithm” asks the detector
data service for a given detector element.

• the service will first look in the transient store
whether this element is already present. If it
finds it, the pointer to the element is returned
directly.

• if the element is not in the transient store, the
detector data service will request the persistency
service to load it.

• the persistency service, depending on the tech-
nology used to store the data will ask the rele-
vant conversion service to convert the data from
the given technology into C++ transient store
objects. The conversion service will actually use
a set of converters specialized in the conversion
of the different possible objects to achieve this
task.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint physics/0306089THJT007



• finally, the detector data service can return a
pointer to the new object in the transient store.

2.3. The persistent storage of detector
data

As explained in the previous section, the Gaudi
transient store mechanism and the different services
involved in the data loading allow an application to
be fairly independent of the technology used to store
the data. However, if one wants to use a given tech-
nology, she/he has to get/provide the corresponding
conversion service as well as a set of converters for
her/his object classes.

In the case of detector data in LHCb, we currently
provide an XML conversion service which is able to
store/retrieve data from XML files and the corre-
sponding set of converters for detector description ob-
jects. The choice of XML was driven mainly by its
easiness of use and the number of tools provided for
its manipulation and parsing. Moreover, XML data
can be easily translated into many other format using
tools like XSLT processors.

The grammar used for the LHCb XML data is
pretty simple and straight forward, actually very sim-
ilar to other geometry description languages based
on XML like GDML [6]. You can see on figure 3 a
short example of a geometry description. However,
the XML specification had some limitations that we
had to remove.

<macro name="length" value="1*m"/>
<macro name="radius" value="20*cm"/>
<macro name="epsilon" value=".1*mm"/>
<subtraction name="sub2">
<box name="mainBox"

sizeX="length"
sizeY="length"
sizeZ="length"/>

<tubs name="hole"
outerRadius="radius"
sizeZ="length+epsilon"/>

</subtraction>
<posXYZ z="length/2"/>
<rotXYZ rotX="90*degree"/>

Figure 3: Sample of XML code describing the detector
geometry.

A first enhancement was to deal with the lack of
types in XML data. As a matter of fact, in pure
XML, everything is a string. Thus if you specify a
length, you will get the string “1*m” instead of a
numerical value. In order to solve this problem, the
Gaudi XmlSvc allows any string to be evaluated via
the CLHEP expression evaluator [16]. It also allows
the user to define macros that can be reused in ex-
pressions, as shown in the code of figure 3.

Another big limitation is the fact that XML data
cannot be split among several XML files. In other
words, there is no way to make cross references among
different XML files. We thus added a small extension
to the basic XML specification which allows this. The
rule is that every XML tag with a name ending with
“ref” is actually a reference to another tag with the
same name, without the “ref”. The syntax of the
reference itself is very simple : a URL containing the
file name and the name of the pointed tag.

Main.xml

<detelem name="Main">
<geometryinfo lvname="/dd/Geometry/lvMain">
<detelemref href="External.xml#Beam"/>
<detelemref href="External.xml#Base"/>
<detelemref href="Detector.xml#Velo"/>
<detelemref href="Detector.xml#Rich"/>

</detelem>

External.xml

<detelem name="Beam">
<geometryinfo lvname="/dd/Geometry/lvBeam"

support="/dd/Structure/Main"/>
</detelem>
<detelem name="Base">
<geometryinfo lvname="/dd/Geometry/lvBase"

support="/dd/Structure/Main"/>
</detelem>

Figure 4: Reference mechanism in XML.

This reference mechanism allows to split the de-
scription of a hierarchical system as a detector among
several files so that each subpart of the system is de-
scribed in a different set of files, handled and edited
by the appropriate person. You can see a small ex-
ample of this in figure 4 where a detector structure is
defined.

3. Extensions of the default schema

The schema presented in section 2 allows to describe
standard detector geometry, materials and structure.
However, this is not sufficient for the vast majority of
real life examples since we cannot extend the default
objects in order to include more specific parameters.

We address this issue by providing three possibili-
ties of extension of the default schema. Depending on
the degree of flexibility required, the extension will of
course require more or less work from the user. The
following subsections describe the details of the exten-
sion process.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint physics/0306089THJT007



3.1. Parameter extension

This is the most simple but also most limited ex-
tension. It allows the user to add parameters to any
detector element or condition. As show on figure 5,
a parameter is simply a triplet (Name, Value, Type).
The type of the parameter can be int, double or string.

<detelem name="MStation01">
<param name="Al_thickness"

type="double">
1.2222*mm

</param>
</detelem>

Figure 5: Definition of a parameter in XML.

The parameters can then be very easily accessed
in the C++ framework as show on figure 6 using the
param method.

SmartDataPointer<IDetectorElement> station
(detSvc(),
"/dd/Structure/LHCb/Muon/MStation01");

std::cout << station->param("Al_thickness");

Figure 6: Access to a parameter in C++.

This first extension possibility allows the user to
store any extra data in the detector elements/condi-
tions and to retrieve them. However, these data are
not structured and cannot be used to extend the be-
havior of the DetectorElement and Condition ob-
jects.

3.2. C++ class extension

The second extension possibility concerns the C++

objects. As permitted by the C++ language itself,
one can extend and customize the default objects
DetectorElement and Condition by simply inherit-
ing from them. This allows addition of any new mem-
ber or method needed to describe the specific behavior
of a given detector subpart.

A special method called initialize is also pro-
vided for customization of the object creation. This
method is actually called just after the creation of any
new object of the given type by the framework.

Figure 7 gives an idea of what a class extension can
provide. Note the use of a parameter in this example
for the initialization of a new member. The different
extension mechanisms are of course not exclusive.

So far so good but one may ask how the framework
is aware of the existence of new objects and can create
them. This is done by associating a unique ID to any
new object type (see figure 7) and mentioning it in the

class MyDetElem : public DetectorElement {
public:
const CLID& clID() { return classID(); }
static const CLID& classID() { return 999; }
int getChannelNb() { return chNb; }
StatusCode initialize() {
chNb = paramAsInt ("ChNb");
return SUCCESS;

}
private:
int chNb;

}

Figure 7: Extension of the default DetectorElement class
in C++.

XML code (see XML code in figure 9, the mention of
an ID is independent of the DTD extension).

Besides the mention of the specific ID of the new
object, one should provide the framework with a spe-
cific converter for this new object type (see subsec-
tion 2.2 for the conversion mechanism details). This
step is highly simplified, and almost automatized by
the existence of a default templated converter that
does everything needed for the user. One still need to
actually declare the new converter by extending the
default one. This is the first line of code in figure 8.
The two other lines deal with the instantiation of the
new converter by the framework using the Gaudi stan-
dard abstract factory pattern.

typedef XmlUserDetElemCnv<MyDetElem> MyCnv;
static CnvFactory<MyCnv> MyFactory;
const ICnvFactory& XmlMyFactory = MyFactory;

Figure 8: Simple converter implementation

3.3. Full extension

The C++ class extension combined with the param-
eters allowed to add data to the default schema and to
specialize the behavior of the DetectorElement and
Condition objects. However, there is still no way to
add structured data and to map them easily to struc-
tured members in the C++ world. This is what we
provide here with the so-called “full extension”.

Here are the new possibilities :

• extend the XML DTD to define new tags and
attributes

• extend the C++ objects as before

• map the new XML tags/attribute to the new ob-
jects members via the writing of dedicated con-
verters

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint physics/0306089THJT007



The second step was the subject of the previous
subsection. Let’s detail the first and last step.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DDDB SYSTEM "../DTD/structure.dtd" [
<!ELEMENT channelSet (channels*)>
<!ELEMENT channel EMPTY>
<!ATTLIST channelSet name CDATA #REQUIRED>
<!ATTLIST channels name CDATA #REQUIRED

nb CDATA #REQUIRED>
]>
<detelem name="Head" classID="1234">
<specific>
<channelSet name="Controls">
<channels name="in" nb="20"/>
<channels name="out" nb="150"/>

</channelSet>
</specific>

</detelem>

Figure 9: Extension of the geometry description
language.

3.3.1. Extension of the XML DTD

The extension of the new DTD by the user almost is
completely unconstrained. The only limitation is that
the new DTD tags must be children of the already
defined <specific> tag of the default DTD. Figure 9
shows an example of a simple extension of the DTD.
We will not go into more details on this since it is
standard XML code.

3.3.2. Writing a new converter

In order to parse the new DTD elements and re-
trieve the corresponding data from XML, the user has
to write a specialized converter. As in the case of the
extension of C++ objects, she/he can reuse the default
converters by inheriting from them.

StatusCode XmlMyCnv::i_fillSpecificObj
(DOM_Element e, MyDetElem* d) {

if ("ChannelSet" == e.getNodeName()) {
DOM_NodeList list = e.getChildNodes();
int nbTot = 0;
for (int i=0; i<list.getLength(); i++) {
DOM_Node c = list.item(i);
DOM_Element ce = (DOM_Element &) c;
if ("channels" == ce.getNodeName())
nbTot += xmlSvc().eval
(ce->getAttribute("nb"));

}
d->setChannelNb(nbTot);

}
}

Figure 10: Writing a dedicated converter in C++.

But this time, she/he has to provide some real code
in order to parse the new DTD elements. This code
has to use the Xerces XML parser [7] as shown in
the example on figure 10. It simply consist in reim-
plementing a single method which is called for every
child of a <specific> node. Writing such code should
be rather straightforward, even for users that are not
used to XML.

4. Condition database

The previous sections described how to store, re-
trieve and customize detector related data in a very
static way. By static we mean that each parameter can
only have one single value whatever the time and the
version of the detector on deals with. This is but not
the case in real life. The most obvious example is the
temperature of a given element of the detector. More-
over, the structure of the detector itself may vary over
time. As an example, the Velo sub-detector of LHCb
can be placed in two different positions depending on
the beam conditions.

We describe in this section how we address this issue
by integrating a condition database into the frame-
work.

4.1. Purpose and content of the database

A condition database is a three dimensional databa-
se, as depicted on figure 11 which contains all varying
data. The three dimensions are the data item, the
time and the version of the detector. Each data item
may then have different values for different times and
different versions of the detector. One may argue that
in real life, only one version of the detector exists at a
given moment in time and that the version dimension
is mainly useless. This is perfectly true for geometry.
However, in the case of calibration data, one could
very well define different versions of the calibration
constants at the same place in time, and compare re-
sults of the physics analysis in both cases.

4.2. Implementation of the database

The implementation of the condition database is
actually segmented into three layers.

• An abstract interface defining the public inter-
face to the database

• The database itself

• A Gaudi service using the abstract interface

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint physics/0306089THJT007



Data Item

Time

Version

Figure 11: Condition Database dimensions.

4.2.1. The condition database interface

The interface to the condition database was spec-
ified before the implementation and agreed between
the CERN IT division and all LHC experiments [8, 9].
Among other things, it specifies which data can be
stored in the condition database. These are chunks
of bytes seen by the interface as char* (in the C++

world).
The actual purpose of the interface is to allow

the use of different implementations (with different
databases in the backend) without changing the Gaudi
service code. We are thus currently able to store our
condition data into three different databases, namely
Objectivity, ORACLE and MySQL.

4.2.2. The Database

Several implementations of the interface are avail-
able. Two of them were provided by the CERN IT
division, one using Objectivity [10] and the other us-
ing ORACLE as a backend.

A third implementation was provided recently by
the Lisbon ATLAS group [11] and uses the open-
source database MySQL as a backend. All of these
implementations can be easily used by the LHCb soft-
ware. Currently, most of the data are stored using
ORACLE. However, we plan to use MySQL for local
replicas of the data (e.g. on laptops).

4.2.3. The Gaudi Service

In the pure spirit of Gaudi, the condition database
was interfaced in LHCb as a new service accessible
via a well defined interface. This service is com-
pletely independent of the actual implementation of
the database since it uses the condition database in-
terface as described in the previous section.

Actually, the service is also independent of the ob-
jects that we store in the database since it is only
used to get chunks of bytes that will be interpreted
afterward by the usual conversion service and its set
of converters. Figure 12 shows the sketch of an access
to data when using the condition database.

• an algorithm first request some data to the De-
tector Data Service.

• if the data already reside in the transient store a
pointer to them is returned. Note at this point
that the data cannot be outdated and cannot use
a bad version of the detector. This is ensured by
a proper cleanup of the transient store each time
the time or the version of the detector changes.

• if the data are not present in the transient store,
the persistency service is called. It will real-
ize that the data are stored in the condition
database and use the condition service to get
them.

• the condition service connects to the database
via the interface and retrieve data as a chunk of
bytes.

• this chunk is then given to the right conversion
service that will use its set of converters to con-
vert it into C++ objects.

• the newly created object is then stored in the
transient store and sent back to the algorithm.

This sketch can be compared to the case described
in subsection 2.2 where no condition database is
present. You can see that the only addition is the
retrieval of data through the condition service instead
of simple file reading.

4.2.4. Impact on end user

The impact of the existence of condition data in
the detector description is actually very small from the
point of view of the end user. This is especially true for
the access to the data, which still takes place exactly
as before and as shown on figure 6. Note than the
user still have to specify which version of the detector
he wants to use.

Concerning the data storage, there are some slight
changes in order to allow the framework to know when
data are stored in the condition database instead of

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6 ePrint physics/0306089THJT007



Service
Persistency

LVolume
LVolume

LVolume

Geometry

Algorithm

Data Service
Detector

Service
Condition

Database
Condition

Abstract Interface

From Database
Retrieve data

Service
XML Conversion

ROOT Conversion
Service

Object
Ask for

Check
Presence Ask creation

Retrieve Pointer

Ask for data

Dispatch

Load

Cnv
Cnv

Cnv

Figure 12: Transient store mechanism in Gaudi using Condition database.

<DDDB>
<catalog name="HCal">
<!-- Hcal slow control catalog -->
<conditionref href=

"conddb:/CONDDB/SlowControl/Hcal/scHcal#scHcal"
/>

</catalog>
</DDDB>

Figure 13: Extension of the geometry description
language.

regular XML files. Figure 13 shows the new XML
code. The only difference lies in the reference to
the data which now uses a special protocol named
“conddb”. The rest of the URL defines where the
data is located in the database.

5. Tools

We describe in this section the set of tools that are
provided in order to facilitate the usage of the detector
description framework. This goes from data edition to
geometry checkers and geometry visualization.

5.1. Data Edition

The main tool we provide for data edition is a spe-
cialized, graphical XML editor. Its interface is shown
on figure 14. As you can see, it is an explorer like, easy
to use editor which incorporates all common features
like cut and paste, drag and drop of nodes, etc...

Its particularity compared to regular XML editor
that one can find on the web is to understand our small
extension to XML dealing with references. In other
words, you can edit your data in this editor across
files without bothering with the references. The XML
that you see and edit actually goes across files and the
only change for you is that he icon of the node you
are editing has a small arrow in a corner, indicating
that you are editing the target of a reference.

Besides this, the tool was implemented in order that
the XML code generated is still easily readable by hu-

man beings (as an example, it is correctly indented).
It can thus be edited in parallel using more usual tools
like (X)Emacs.

5.2. Geometry checking

One of the main problems arising when describing
the geometry of a detector is to validate it. Usually
the validation is done in two steps : the first step con-
sists in looking at the geometry and correcting obvi-
ous errors. The second step consists in verifying that
there are no volume intersections in the geometry that
would prevent the simulation to work correctly. This
intersections, when small and hidden are actually very
hard to detect by visual inspection.

The first step is achieved using the visualization
software presented in subsection 5.3. In order to
achieve the second step, two main tools are provided,
a visual geometry checker and the transport service.

5.2.1. Visual geometry checker

The Visual geometry checker is based on the David
tool [12] : the Dawn’s Visual Intersection Debug-
ger provided with the Geant4 [2] simulation package.
It was interfaced to Gaudi using the Giga package
(“Gaudi Interface to Geant Application”) [13, 14].

This tool allows to visually debug the geometry by
making every intersection appear in red on the screen.
It provides a very good first pass debugging but does
not actually insure that the corrected geometry is er-
ror free. From time to time, it even finds fake errors.

The problem of this tool is that it is fully based on
graphical visualization. This makes it very handy but
also makes it suffer from the approximations that are
done in the computation of the graphical display of the
geometry. In order to insure error free geometry, one
has to provide another tool, free from these geometry
display approximation and only dealing with original
geometry data.

5.2.2. Transport Service

The transport service tool is not initially a geometry
correction tool. As its name mention it, it provides
services for propagating particles in a given geometry.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7 ePrint physics/0306089THJT007



Figure 14: XmlEditor graphical interface.

The key point is that this transportation mechanism
is very sensible to every intersection of two volumes
in the geometry description. This allowed to change
it into a powerful geometry checker. The principle
is to make many particles go through the geometry
randomly so that the probability to cross every volume
is very high. If ever an intersection of volumes exists,
it will be found when crossing it and reported to the
user.

This tool has proved to be more reliable and more
precise that David. However, it is not graphical and
less handy.

5.3. Visualization

The 3D visualization tool provided in the LHCb de-
tector description framework is called Panoramix[15]
and is actually far more than just a geometry visual-
ization tool. As a matter of fact, it is also able to dis-
play event data, to deal with histograms and even to
launch interactive analysis of data through its python

interface to Gaudi.
Figure 15 shows a picture of the Panoramix user

interface as well as some pictures of the LHCb geom-
etry.

6. Conclusion

The LHCb detector description framework pre-
sented here is nowadays fully functional and proved in
the past months to be stable and efficient. It was ac-
tually used for our last data challenge and more than
50 millions of events were reconstructed and analyzed
using it.

The first simulations using Geant4 were also run
showing that the sharing of the detector descrip-
tion between Simulation, Reconstruction and Analysis
software works as expected.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

8 ePrint physics/0306089THJT007



Figure 15: Panoramix Visualization software.

References

[1] G. Barrand, I. Belyaev, P. Binko, M. Cattaneo,
R. Chytracek, G. Corti, M. Frank, G. Gracia, J.
Harvey, E. van Herwijnen, B. Jost, I. Last, P.
Maley, P. Mato,S. Probst, F. Ranjard, A. Tsare-
gorodtsev, “LHCb detector description frame-
work”, CHEP’00, Padova, February 2000.

[2] Geant4 project, http://cern.ch/geant4
[3] P.Mato Vila et al., “GAUDI - A software architec-

ture and framework for building LHCb data pro-
cessing applications”,CHEP’00, Padova, Febru-
ary 2000.

[4] P. Mato Vila et al., “Status of the GAUDI
event-processing framework”, CHEP’01, Beijing,
September 2001.

[5] GaudiProject, http://cern.ch/gaudi
[6] R. Chytracek, “The Geometry Description Mar-

kup Language”, CHEP’01, Beijing, September
2001.

[7] Xerces C++ Parser, http://xml.apache.org/
xerces-c

[8] P.Mato, “Conditions DB for LHCb, Inter-
face Specification Proposal”, http://lhcb-
comp.web.cern.ch/lhcb-comp/Frameworks/-
DetCond/conddataspecs.pdf

[9] S. Paoli, “Condition Database Interface
Specifiction”, http://wwwdb.web.cern.ch/-
wwwdb/objectivity/docs/conditionsdb/-
interfacespec0.1.pdf

[10] Objectivity implementation of the condition
database, http://wwwdb.web.cern.ch/wwwdb/-
objectivity/docs/conditionsdb

[11] A. Amorim, J. Lima, C. Oliveira, L. Pedro,
N. Barros, “Experience with the Open Source
based implementation for ATLAS Conditions
Data Management System”, CHEP’01, Beijing,
September 2001.

[12] S. Tanaka, K. Hashimoto, “A Visual Intersection
Debugger for Modeling Geant4 Detector Geome-
try”, CHEP’98, Chicago, September 1998.

[13] W. Pokorski et all, “Simulation application for
the LHCb experiment”, CHEP’03, La Jolla,
March 2003.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

9 ePrint physics/0306089THJT007



[14] I. Belyaev, G. Gracia, P. Mato, F. Ranjard,
“Integration of Geant4 with the GAUDI event-
processing framework for building simulation ap-
plications”, CHEP’01, Beijing, September 2001.

[15] LHCb Visualization software, http://lhcb-

comp.web.cern.ch/lhcb-comp/Frameworks/-
Visualization

[16] CLHEP - A Class Library for High Energy
Physics, http://www.cern.ch/clhep

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

10 ePrint physics/0306089THJT007


