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A Java software framework allows modules written in different languages to be used in a high level Object-
Oriented (OO) environment. Java Native Interfaces (JNI) for Linear Collider (LC) physics event generators
are used in defining a common generator interface package. Portable-JNI for TESLA and Asian JLC detector
simulation modules have been written for performing comparisons to the American LC detector simulation.
Physics and detector Java analysis modules using prototype HEP class libraries provide high level OO study
tools. Complete physics generation, parallel detector simulations and event analysis for full 500 fb−1 simulated
data samples are performed in single-pass batch jobs. Java histogram objects files are saved for final presen-
tation using the Java Analysis Studio (JAS). The software architecture, JNI designs and overall performance
is presented. Comparisons of American, Asian and European detector simulations of Higgsstrahlung events
generated by Pandora, Pythia and Whizard are made.

1. INTRODUCTION

In performing Linear Collider physics and detec-
tor studies, one encounters a number of existing For-
tran77, and new C++ and Fortran95 software mod-
ules for event generation, detector simulation and ana-
lyis. Stand-alone packages exist for Pandora(C++),
Pythia(F77) and Whizard(F95) physics generation,
and in some cases have been integrated into separate
simulation packages for TESLA SimDet(F77), Asian
JLC QuickSim(C++) and American Java Fast Monte
Carlo detector studies. Individual physics analyses
proceed by adopting one of the generator and detec-
tor simulation packages and often are hard to compare
to similar analyses done in different environments.
A Java software framework [1] allows the use of dif-
ferent event generators, detector simulation packages
and analyis modules in the same high level Object-
Oriented (OO) environment. An environment which
provides modern development tools for Java physics
and detector analysis modules using prototype HEP
class libraries [2]. The model allows networked graph-
ical interactive applications, or batch single-pass pro-
cessing of complete physics generation, parallel detec-
tor simulations and event analysis for full 500 fb−1

simulated data samples. Java histogram objects files
can be saved for final presentation using the Java
Analysis Studio (JAS) [3].

In this paper, Java Native Interfaces (JNI) for Pan-
dora, Pythia and Whizard Linear Collider physics
event generators are described and used in defining
a Java framework with a common generator interface
package, Sec. 2. Sections 3 and 4 list the generator
and detector simulation modules, respectively. A sim-
ple comparison of the different physics generators is
made for a LC bench mark process in Sec. 5. Detector
simulations using the U.S. Fast Monte Carlo, TESLA
SimDet and Asian QuickSim packages are compared
in Sec. 6. Details of interface implementations for the
generators, and for executing SimDet and QuickSim
detector simulations and accessing simulated quanti-
ties are outlined in Sec. 7. Java software package orga-

nization and a brief discussion of the documentation
is left for Sec. 8.

2. JAVA ANALYSIS FRAMEWORK

Several prototype Java interfaces, classes and li-
braries have been written[1] to provide a high level
object-oriented physics generation, detector simula-
tion and analysis environment for e+e− Linear Col-
lider studies.

2.1. Generator interface

A protype Java object model has been developed to
generalize the interface to physics generators such as
Pandora, Pythia and Whizard. The following meth-
ods are implemented through Java Native Interfaces
(JNI) to the underlying C++, Fortran77 or Fortran95
package:

• setup() - Set up generator configuration using
default parameters.

• initialize() - Initialize for selected beams, energy
and physics process with given parameters.

• generateEvent() - Generate an event.

• terminate() - Summarize generated data sample.

One additional method is required to provide infor-
mation about the generator.

• getName() - Return generator name and version
number.

Generator specific methods have been added such as

• list(int) - List particles in the event.

The useage of the Java generator interface is out-
lined in the following excerpt:
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// Import the Pythia generator classes.
import hep.generator.pythia.*;

// Create a Pythia process.
pythia = new Pythia();

// Set up a "User-defined" Pythia process
// with a String of parameters settings.
pythia.give(parameters);

// Initialize the e+e- Center-of-Mass system.
pythia.init("CMS","e+","e-",Ecm);

// Run Pythia to generate and list events.
for (int n=1; n<=NEvents; n++) {
pythia.generateEvent();
pythia.list(1);

}

Generator processes interfaces have been defined for
classes which dynamically load predefined process set-
tings, such as PythiaProcess for initializing Pythia. A
number of reference process classes have been written,
such as eetoZH for Higgsstrahlung and eetottbar for
Top-pair production processes.

2.2. EventGenerator and analysis
modules

The generator interface described above is used
to provide “EventGenerator” modules for the
American LCD framework[2]. A Java package
hep.lcd.generator is abstracted to introduce differ-
ent generator modules as alternative “EventSource’s”:

• Generator - Defines a standard HEP physics
event generator module.

• GeneratedEvent - Defines a generated event.

• HEPEvent - Provides a standard /HEPEvt/ im-
plementation of a generated event.

The useage of a LCD EventGenerator module is illus-
trated by

// Import the LCD generator classes for Pythia.
import hep.lcd.generator.pythia.*;

// Create a Pythia generator for given process.
generator = new PythiaGenerator(processName);

// Run to generate and dump the first event.
for (int n=1; n<=NEvents; n++) {
event = generator.generateEvent();
if (n==1) event.dump();

}

Within the LCD Java framework, event processing
and analysis modules are added as “Driver’s” or “Pro-
cessor’s” defined in a hep.lcd.util.driver package.

The following classes outline the use of detector sim-
ulation and analysis modules:

public class AnlPythiaZHJets implements Driver

public AnlPythiaZHJets()

add(detectorSimulation);
add(analysis);

or
add(new MCFast());
add(new SimDetModule());
add(new QuickSimModule());
...
add(new PythiaZHJetAnalysis());

class PythiaZHJetAnalysis implements Processor
void process(LCDEvent event)
particles = event.get("MCParticles");
tracks = event.get("SimDet Tracks");
objects = event.get("Energy Flow Objects");
...

Note that the Java Virtual Machine (JVM) allows
multiple detector simulations to run in independent
computer memory space.

2.3. Analysis classes and tools

The utility of Java physics and analysis class li-
braries is illustrated in the following excerpts for the
Particle physics class

int PDGID = particle.getType().getPDGID();
double[] PV = particle.getMomentum();
double pT = Math.sqrt(PV[0]*PV[0]+PV[1]*PV[1]);
double tanTh = pT/PV[2];

and the Histogram analysis class

histogram("Mass").fill(particle.getMass());

Java framework applications can be built using
standard HEP analysis tools and run through con-
venient Java packages so that

• gmake - Compiles Java and native code then cre-
ates a shared object library.

• java -mx64M GenWhizard ... - Loads Java and
all shared object libraries, executes Whizard and
writes a xxx.javahist unbinned histogram file.

After completing several jobs, the Java Analysis Stu-
dio [3] can be used to combine histograms and make
presentation plots.

jas &
Open files: xxx.javahist yyy.javahist ...
Overlay and format plots
Save as PostScript files
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3. MONTE CARLO EVENT GENERATORS

Three representative LC physics generators have
been used in this development: Pandora V2.2,
Pythia V6.2 and Whizard V1.22. Pythia which has
been extensively tested by many experiments was used
to provide checks on specific processes. Pandora and
Whizard are new developments which also offer com-
plete event generation capability.

3.1. Pandora Monte Carlo

The Pandora V2.2 [4] Monte Carlo provides sim-
ulations of selected two- and three-body processes
and some illustrative beyond the Standard Model
processes. Initial state radiation, beam polariza-
tion, and final state spin correlations are included for
all processes. In stand-alone applications Pandora
is used with the Pandora-Pythia V3.2 [5] interface
package to generate final state events. A “straight-
forward” interface from the Java language to under-
lying Pandora C++ methods, Sec. 7, is provided in a
hep.generator.pythia Java package, Sec. 8.

3.2. Pythia Monte Carlo

The Pythia V6.2 [6] Monte Carlo program allows
generation of high-energy physics events including
hard and soft interactions, parton distributions, initial
and final state parton showers, multiple interactions,
fragmentation and decay. A Java-C-Fortran77 inter-
face described below provides full Pythia functionality
within the Java environment.

3.3. Whizard Monte Carlo

The Whizard V1.22 [7] Monte Carlo system is de-
signed for the efficient calculation of multi-particle
scattering cross sections and simulated event sam-
ples. Tree-level matrix elements are generated au-
tomatically for arbitrary partonic processes by call-
ing external programs (O’MEGA, MADGRAPH and
CompHEP). In this development, Java-C-Fortran95
interfaces to new Whizard procedures for initializa-
tion, phase space integration, event generation and
summary was written to allow easy portability and
compiler independence.

4. DETECTOR SIMULATION MODELS

Models of the expected LC detector response to
500 GeV e+e− annihilation events are being devel-
oped. Preliminary versions used in this study are de-
scribed below, and compared in Sec. 6. The detailed
Java interface implementations are outlined in Sec. 7.

4.1. LCD Fast Detector Simulation

The American LCD V1.4 detector simulation in-
cludes charged particle momentum smearing based
on detailed error estimates, gaussian energy smear-
ing for photons and neutral hadrons, and acceptance
and energy threshold requirements. It doesn’t account
for confusion in reconstructing calorimeter energy de-
posits resulting in perfect energy flow separation of
charged and neutral components of jets.

4.2. TESLA SimDet Detector Simulation

The European SimDet V4.0 detector simulation
includes parameterized charged and neutral energy
smearing based on full (Brahms) Monte Carlo sim-
ulations, acceptance requirements, and a realistic en-
ergy flow algorithm.

4.3. JLC QuickSim Detector Simulation

The Asian QuickSim detector simulation includes
the generation of tracker hits followed by track and
vertex reconstruction. Simulated calorimeter cell en-
ergy depositions are formed based on detailed detector
simulations. Detailed cluster finding and track-cluster
matching are performed before writing out combined
track information..

5. PHYSICS GENERATOR
COMPARISONS

The Pandora, Pythia and Whizard Linear Collider
physics event generators are compared in Fig 1 for
LCD Fast Monte Carlo detector simulations of Hig-
gsstrahlung, e+e−→Z Higgs, events. In these studies
all generators were run at ECM = 500 GeV, and the
Higgs mass was set to 115 GeV. Pythia hadronization
was used following all parton-level event generation
processes. For Pandora, the NLC500 machine param-
eters were selected in simulating the beamstrahlung
energy spectrum. While both Pythia and Whizard
event generators used Circe beamstrahlung simulation
of the TESLA machine. These different machine set-
tings are not significant in this comparison.

Overall, the generators were found to be in good
agreement. In this study, Whizard V1.22 generated
events did not include the natural Z width as seen
in the jet-jet mass distributions shown in Fig 1d; a
Whizard deficiency that has been corrected following
this work.

In related studies [13], the Java framework was used
to compare the simulation of background processes for
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Figure 1: LCD Fast Monte Carlo Particle jet distributions comparing Pandora, Pythia and Whizard generated
Higgstrahlung events: a.) number of “correctly” reconstructed jets, b.) angular distribution (cos(θ)Max) of jets, c.) jet
finder final “ycut” value, d.) jet-jet mass distributions showing Z and Higgs hadronic decay signals and the
combinatorial background.

WW , ZZ and qq production from Pandora with ex-
plicit final state simulations in Whizard. These com-
parisons showed discrepancies due to the more pre-
cise treatment of polarization in Pandora for exclu-
sive processes. The simulation of inclusive, interfer-
ring processes in Whizard was found to be the most
complete, and the Whizard MadGraph amplitude cal-
culation provided handelling of parton color flow in-
formation.

6. DETECTOR COMPARISONS

In a e+e− Linear Collider the Higgs can be recon-
structed through hadronic decays[13] even in multi-
jet final states. The jet-jet mass distributions for the
American LCD Fast Monte Carlo (FMC), TESLA
SimDet and JLC QuickSim detector simulations of
Higgstrahlung signal-only events with the Z and Higgs
decaying hadronically are shown in Fig 2. In these
current simulations, the LCD FMC jet-jet mass reso-
lution is significantly better since it assumes “perfect”

energy flow. More-realistic TESLA SimDet and JLC
QuickSim detector simulations give comparable jet en-
ergy resolutions but different mean reconstructed jet-
jet masses. Both these simulation models may be im-
proved with the development of new techniques to re-
solve charged and neutral calorimeter clusters, and to
correct for the loss of low energy tracks and clusters.

The overall performance of the Java framework,
event generators, detector simulations and jet analyis
was quite acceptable for full 500 fb−1 production
runs. Each generator was run separately with all
three detector simulations being performed for the
same generated event. The Java framework itself and
event generation and fragmentation typically took
much less than 100 msec per event, with the longest
times for multi-body processes. The detailed native
SimDet and QuickSim detector simulations each took
about 300-500 msec per event, depending on the
type of events. The Java jet-finding which included
multiple passes to merge jets and the subsequent
analysis took roughly 100 msec per event for each
type of particle jet being found, e.g. for Monte Carlo
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Figure 2: Direct reconstruction of Z and Higgs through hadronic decays is shown for Higgsstrahlung signal events only.
Jet-jet mass distributions for U.S. LCD Fast Monte Carlo (FMC), TESLA SimDet and JLC QuickSim detector
simulations are reconstructed for Whizard-MadGraph Monte Carlo events including ISR and Circe beamstrahlung
effects.

particles, for jets found from reconstructable tracks
and clusters, or for Energy Flow object jets. The
typical overall event generation, multiple detector
simulation, and jet analysis took about 1-1.5 seconds
per event.

Batch jobs were labelled by the generator name and
parameters that were set, and histogram folders were
created for the different detector simulations. In the
analysis of results, JAS would open separate output
histogram files in different folders and use the folder
names to automatically generate plot legends.

7. JAVA NATIVE INTERFACE (JNI)
IMPLEMENTATIONS

The physics generator, physics event, detector sim-
ulation and software framework implementations1 for
all developed software modules are outlined in Table I.

In generating events through the Pandora-JNI, a
Java-C++ interface is used to allow the setting of
different beam configurations, and to create physics
processes to be added to Pandora’s Box. Pandora
processes parameters, such as the Higgs mass, are

1http://www-lc.lbl.gov/software/docs/

required for the Java interface construction. Once
a Pandora process has been created no Java object
to C++ object interface is needed. Pandora gener-
ates primary partons which are accessed through the
HEPEvt-JNI and passed to Pythia for fragmenta-
tion.

The Pythia-JNI allows for independent event gener-
ation and fragmentation processing. The interface can
be used to pass configurations through pygive or to use
Java classes such as “eetoZH” to configure Pythia for
simulating the Higgsstrahlung process. The Pythia
interface will be quickly replaced when new C++ ver-
sions of Pythia are made available and tested.

The Whizard interfacing to Fortran95 was sim-
plified by creating a few simple Fortran95 modules.
Whizard is configured by reading a “whizard.in” data
file. Future developments of the Whizard Java inter-
face are planned.

Java interfaces to the HEPEvt data structure and
StdHEP output were written for multi-purpose use.
After a generator fills HEPEvt, framework modules
read the information and create event objects. These
objects are later downloaded into HEPEvt structures
that are accessed by fragmentation processes or by the
different detector simulations. The design allows any
combination of physics generator, fragmentation pro-
cess or detector simulation. User analysis interfaces
have also been written to allow one to use existing
analysis packages.
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An interface to Circe [8] is used to handle the initial-
ization of beamstrahlung simulation parameters from
the Java framework for the Pythia and Whizard gen-
erators. The Tauola [9] τ -decay package was used to
handle polarization effects. A simple Java interface
was written to allow testing of individual Tau decay
modes.

The detector simulation packages have simple in-
terfaces to set up, initialize and execute the simula-
tions. Care was taken to pass events into the packages
through separate HEPEvt interfaces. The simulated
detector responses for SimDet and QuickSim are ac-
cessed from underlying storage into Java track and
cluster classes to form reconstructed objects that are
added to the LCD event for subsequent analysis. The
SimDet and QuickSim interfaces follow a similar de-
sign model which could be generalized for other ap-
plications.

8. JAVA SOFTWARE PACKAGE AND API
ORGANIZATION

The interface software and LCD modules have been
organized into several Java packages or class libraries.
The interfaces to the imported physics generator and
detector simulation modules are in the HEP packages
listed in Table II. The LCD framework modules are
organized in the packages listed in Table III. The LCD
modules provide reference implementations using the
more generic interfaces to the HEP packages.

The LCD event generator and detector simulation
modules are designed for simple use, see Sec. 2.2. The
Generator, Fragmentation and GeneratedEvent inter-
faces allow the design of abstract models for sourcing
events to be based to the different detector simulation
modules. Simulated reconstructed objects implement
a basic Particle class allowing the development of ab-
stract analysis methods to reconstruct event quanti-
ties from different detector models.

Special utility packages, pandorapythia and
whizardpythia, based on the Pandora-Pythia [5]
software model for handelling the physics interfacing
from Pandora and Whizard generated parton color
flow information to Pythia hadronization, are located
in the hep.lcd.util package.

Software Application Programming Interface (API)
documentation on all Java packages is available on
the web2. Class inheritance and method signiture
documentation is automatically generated. Some
documentation exists for most classes while comments
on many self-explanatory methods are missing.

2http://www-lc.lbl.gov/software/java/api/

In building stand-alone event generation, detector
simulation and physics analysis packages, the Java
classes are compiled according to the following rule

# For a collection of Java source files
JAVAFILES := $(wildcard hep/.../*.java)

# the corresponding class files are obtained
CLASSFILES:= $(patsubst %.java, \

%.class,$(JAVAFILES))

# and compiled with
%.class: %.java

@echo "Compiling" $(*F)
@javac $(JAVACFLAGS) $<

Header files for the JNI implementations are automat-
ically generated from the Java source code using a
utility

$(HeaderFile): $(JNISource)
@if [ -f $(TargetFile) ]; \

then rm $(TargetFile); fi;
@javah -jni -d $(TargetDir) $(Source)

Shared object libraries and native code are compiled
following

gcc -shared -I$(JavaJDK)/include \
-I$(JavaJDK)/include/linux \
...
-L/usr/lib/gcc-lib/i386-redhat-linux/2.96 -lg2c \
-L/usr/lib -lc \
-o $(SharedLib)

where JavaJDK locates the Java development kit
(JDK), the include files are used by the JNI imple-
mentations, and the library list usually includes Linux
specific libraries and general libraries that normally
would be loaded into an executable image. The shared
object library is located by the LD LIBRARY PATH
environment variable and loaded into the JavaVM fol-
lowing

public class Pythia
{
...

/** Static initializer loads Pythia library. */
static {
String libname = "pythia";
System.out.println(" Load lib"+libname+".so");
System.loadLibrary(libname);

}
}
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Table I Java Native Interface (JNI) Implementations

Package Java method signature Native invocation
Physics Generators
Pandora C++ → C++

Create a new beam. native newBeam(Eb,pol,in,out); b1 = new ebeam(Eb,pol,in,out);
Create a new process. native newProcess(name,param); P = new processName(param);
Add process to Pandora’s box. native add(PandoraProcess process); Box→add(*P);
Generate an event. native nextEvent(); LEvent LE = Box→getEvent();

Pythia C → F77
Give a parameter list. give(String s) { give(s,s.length); }

native give(String s,int len); pygive (string,length);
Initialize CMS frame. native init(String frame, ...); pyinit (frame,b1,b2,&E,i,j,k);
Generate an event. native exec(); pyexec ();

Whizard C → F95
Read input data file. native readInput(); whizard read input ();
Do phase space integration. native integrate(); whizard integrate ();
Generate an event. native event(); whizard event ();

Circe C → F77
Initialize beamstrahlung simulation. native init(double X1M, ...); circes (&x1m, ...);

Tauola C → F77
Set decay mode of Tau+ or Tau-. native setDecayMode(int i, int mode); if (i==1) jaki .jak1 = mode;

else if (i==2) jaki .jak2 = mode;

Physics Events

HEPEvt C → F77
Get momentum vector component. native getPHEP(int i, int j); return hepevt .phep[i][j];

StdHEP C → F77
Initialize output file. native initialize(String outfile, ...); stdhinit (outfile,&ngen);
Write an event. native writeEvt(); stdhwrit (&nevt);

Detector Simulations
SimDet C → F77

Initialize detector model. native init(); siinit ();
Set detector parameters. native detr(); sidetr ();
Simulate detector response native exec(); siexec ();

QuickSim C++ → C++/F77
Create a JSF package. . native newJSF(); jsf = new JSFSteer(...);
Set up QuickSim process. native setup(); sim = new JSFQuickSim(...);
Set type of generator. native setGenerator(type); sim→setGenerator(type);

Simulate detector response native exec(); result = jsf→Process(eventNum);

Software Frameworks
JSF C++ → C++

Create a new JSF framework. native newJSF(); jsf = new JSFSteer(...);
Add a LCFull process. native addLCFull(); full = new JSFLCFULL(...);
Set up defaults: native setup(); sim = new JSFQuickSim(...);
Set type of generator. native setGenerator(type); sim→setGenerator(type);

Add an analysis process. native addAnalysis(); anal = new MyAnalysis();
...

8
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Table II HEP Java software package

Project Java classes Java package name
HEP Generator packages hep.generator
Pandora Pandora, PandorasBox, Beam, hep.generator.pandora

PandoraProcess, eetoee, eetoZHiggs, ...

Pythia Pythia, PythiaProcess, eetobbbar, hep.generator.pythia
eetoZH, ...

Whizard hep.generator.whizard

also
Circe Circe hep.generator.circe

Tauola Tauola hep.generator.tauola

HEP Event package
HEP HEPEvt, StdHEP hep.event

TESLA packages
SimDet detector simulation SimDet, SimDetCHAPAEntry, hep.tesla.simdet

SimDetCLUSEntry, SimDetEFLOWEntry, ...

JLC
JSF Software framework JSFSoftwareFramework, JSFGenerator, hep.jlc.jsf

JSFGeneratorParticle, JSFPythiaGenerator

QuickSim detector simulation JSFPackage, QuickSim, hep.jlc.quicksim
QuickSimParticleEntry, QuickSimTrackEntry,
QuickSimCalHitEntry, ...
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Table III LCD Java software package organization

Package Java classes Java package name
Generator packages
Physics generators Generator, Fragmentation hep.lcd.generator

GeneratedEvent, HEPEvent

Pandora generator PandoraGenerator, PandoraEvent, hep.lcd.generator.pandora
LCDPandoraEvent

Pythia generator PythiaGenerator, PythiaFragmentation, hep.lcd.generator.pythia
PythiaEvent, LCDPythiaEvent

Whizard generator WhizardGenerator, WhizardEvent, hep.lcd.generator.whizard
LCDWhizardEvent

Monte Carlo packages
hep.lcd.mc

U.S. Fast MC Detector Simulation MCFast, ReconTrack, hep.lcd.mc.fast
ReconCluster, ...

TESLA SimDet Detector Simulation SimDetModule, SimDetDriver, hep.lcd.mc.simdet
SimDetAdapter, SimDetParticle,
SimDetTrackList, SimDetClusterList, ...

JLC QuickSim Detector Simulation QuickSimModule, QuickSimDriver, hep.lcd.mc.quicksim
QuickSimAdapter, QuickSimParticle,
QuickSimTrackList, QuickSimClusterList, ...

Software framework packages
hep.lcd.framework

JLC Software Framework JLCSoftwareFrameworkDriver, JSFEventGenerator, hep.lcd.framework.jsf
JSFGeneratorParticle, ...
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