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Detailed detector simulation and reconstruction of physics objects at the LHC are very CPU intensive and hence
time consuming due to the high energy and multiplicity of the Monte-Carlo events and the complexity of the
detectors. We present a dynamically configurable system for fast Monte-Carlo simulation and reconstruction
(FAMOS) that has been developed for CMS to allow fast studies of large samples of Monte-Carlo events. Each
single step of the chain - simulation, digitization and reconstruction, as well as combinations of chain links can
be replaced by modules that sacrifice precision for speed. Fast and detailed modules have identical interfaces
so that a change is fully transparent for the user.

Currently, a complete set of the fastest possible implementation, i.e. going directly from the Monte-Carlo
truth to reconstructed objects, has been implemented. It is about hundred to thousand times faster than
the fully detailed simulation/reconstruction and provides tracks reconstructed by the inner tracker, clusters in

calorimeters and trigger-Lvll objects and tracks reconstructed for the muon system of the CMS detector.

1. Introduction

The detailed simulation and reconstruction of
physics events at the Large Hadron Collider (LHC),
pp collisions at 14 TeV, where a large number of high-
energy particles are produced and up to 200 collisions
overlay, is extremely time consuming even on todays
fastest CPUs. However, to investigate the physics po-
tential of the CMS detector a large number of colli-
sions must be studied. This is especially true for scan-
ning the multi-dimensional parameter space of SUSY
models. By replacing the detailed modeling of en-
ergy losses and material effects in simulation as well
as the reconstruction algorithms by simple parame-
terizations significant improvements concerning speed
can be at the price of precision losses.

2. The Simulation, Reconstruction and
Analysis chain

The procedure to analyze physics models can be
decomposed into four major steps:

1. Generation of Monte-Carlo events.

The Monte-Carlo events are created using gen-
erators like Pythia, Herwig or ISAJET. These
generators produce a list of particles - stable
and decaying - and their four-vectors. In CMS
the information is stored in form of HBOOK-
Ntuples. The time required to generate an event
is normally less than 100 milliseconds®.

2. Simulation of material effects.
This is the most time consuming step required.

*current address: CERN, 1211 Geneva 23, Switzerland
LAll times are given as measured on a 1 GHz Pentium III.
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Currently, the simulation is still done with a
Geant3 [1] based FORTRAN program: CM-
SIM [2]. The time varies significantly depending
on the number of particles and their energies in
the Monte-Carlo events. The average is between
100 and 200 seconds per event. The information
that is stored as output of this step are called
SimHits. They contain the information about
the energy stored in different detector elements
at different times. A new, object-oriented simu-
lation program OSCAR [3], based on Geant4 [1],
is currently being validated.

. Simulation of readout electronics (digitization).

The detector converts the energy deposited by
the particles into electronic signals that are
converted to digital information by ADCs and
TDCs. At the high luminosity at the LHC the
detector “sees” the overlap of up to 200 min-
imum bias events with a single signal event.
Since the simulation of material effects requires
large amount of CPU time, the minimum bias
events are randomly selected from a large pool
of simulated events and combined with the sim-
ulated signal events. So even being technically
part of the simulation, the combination of min-
imum bias events with a signal event and the
simulation of the detector response to the energy
deposition are performed by the reconstruction
software: ORCA [5]. The time for this depends
on the simulated luminosity and the event type.
It is 1 to 10 seconds per collision. The output
created in this step is called DIGIs.

. Reconstruction of physics/analysis objects.

The reconstruction is performed by ORCA in
several sub-steps. First the DIGIs are combined
to reconstructed hits, RecHits, which for exam-
ple combine several strips of the silicon tracking
detectors. Similarly, level-1 trigger objects are
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built. Then RecHits are used to find tracks in
the inner tracker and the muon chambers and
clusters in the calorimeters. The reconstruction
can produce more complicated objects like jets
or information about the missing energy and
finally physics objects like electrons, photons,
muons etc. The time spent on this can vary
largely but is typically 10 to 100 seconds per
collision.

The total CPU time required before the analysis of
a collision can be started is 3-5 minutes.

3. Structure of FAMOS

To give physicists the possibility to study large
event sample fast, the FAMOS? project has been de-
veloped in CMS. The main design concept is to pro-
vide fast modules, able to replace each single step in
the chain, as well as several steps in one go and this
complying to the same interfaces as the full simulation
and reconstruction.

Figure 1: FAMOS subsystems and their relation to other
CMS projects. The arrows indicate the dependencies.

To achieve this FAMOS is divided into several sub-
systems that focus on the different steps. Figure 1
shows the different subsystems and their relations to
the other CMS object-oriented software projects. CO-
BRA/CAREF [7] is the general framework that controls
event handling, DDD [3] provides services for geome-
try handling, OSCAR is the simulation software and
ORCA the reconstruction software. The subsystems
for a particular task can be accessed via several in-
terfaces: One providing the same interfaces as for the
corresponding detailed simulation or reconstruction,
one for simplified and easy standalone usage. The im-
plementation of OSCARInterface and ORCAInterface
allows to dynamically change from detailed simulation
and reconstruction to the FAMOS implementations.

2FAst MOnte-carlo Simulation, see [6]
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The first implementation focuses on the replace-
ment of all steps for simulation and reconstruction
and produces physics objects directly from the Monte-
Carlo four-vectors. This corresponds to the hashed
area in Figure 1. The rest of this article describes the
current implementation.

4. Event handling and simulation
modules

When implementing the direct way from Monte-
Carlo events to physics analysis objects, two main is-
sues arise. First the Monte-Carlo event is read and
second dedicated simulation modules for the different
sub-detectors of CMS are executed.

4.1. Monte-Carlo event reading

An important first step in FAMOS is the handling
of the original Monte-Carlo event. The event is stored
in the class RawHepFEvent that is an exact C++ im-
plementation of the HEPEVT FORTRAN Common-
Block that is used by most Monte-Carlo generators.
An abstract base class BaseHepFEventReader exists
that allows to fill the RawHepFEvent from a multitude
of sources. ASCII files, HBOOK Ntuples, particle
guns - mostly used for single particle tests, from the
databases used as persistency store by OSCAR and
ORCA and directly from the Pythia-6 Monte-Carlo
generator. Similar reader modules can be created for
other Monte-Carlo generators.

The event reader modules are provided by the CMS
framework, COBRA, and used from there.

4.2. FAMOS event handling

In FAMOS an special event manager class, Famo-
sEventMgr, takes care of

e reading the Monte-Carlo event and

e calling simulation modules that inherit from
FamosSimulator

It interfaces directly to the reconstruction on de-
mand mechanism that is a key point of the CMS
framework. Figure 2 shows a collaboration dia-
gram between the FamosFEventMgr and the framework
classes. At startup FamosFEventMgr accepts registra-
tions from the selected FamosSimulator modules and
reads the geometry. Concrete classes that inherit from
FamosSimulator implement the fast simulation algo-
rithms.

When starting to loop over events, the FamosFEv-
entMgr first fills RawHepFEvent from the selected in-
put. RawHepFEvent is also used to keep track of new
particles that can be created by the FamosSimulator
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Figure 2: Collaboration diagram for the FAMOS event manager class

classes. This modification of the event is done to take
care of effects like Bremsstrahlung, pair production or
multiple scattering.

The FamosSimulator classes are called in a well de-
fined sequence. It is important to follow the order
in which the particles cross the detector - first the
Tracker, then the Calorimeters (ECAL and HCAL)
and only last the Muon system.

Currently, the simulators are called in the order of
their registration - the user is responsible to do this
correctly.

4.3. Simulation modules and interfaces
to the framework

The classes inheriting from FamosSimulator are im-
plementing the concrete fast simulation parameteriza-
tions. Currently, implementations exist for

e material effects

e tracking (Tracker and Muon)
e clectromagnetic clustering

e muon level-1 trigger

The simulation modules - residing in the Generator-
ToAnalysis subsystem have to implement a method
bool reconstruct(RawHepEvent &) ;
and can add methods to provide the objects they sim-
ulate or reconstruct. All modules provide access to
objects that are kept as simple as possible and a spe-
cial, framework specific mechanism is then applied to
provide the results in a form compatible with the in-
terfaces used in normal ORCA jobs: Rec0bj

classes. This is done in the ORCAInterface sub-
system. Direct use of the simulators can be achieved
using the Standalonelnterface subsystem.

Figure 3 shows how classes from COBRA
(LazyObserver, RecUnit), ORCA (TTrack) and
FAMOS (generic:  FamosSimulator, Generator-
ToAnalysis: BaseFastTracksFromGenerator,
ORCAInterface: RecTrackFromParticle,
THJT004

FastTrackReconstructor) work together to provide
Tracker tracks produced by the fast simulation
modules with identical interface to the ORCA anal-
ysis program as tracks from the full reconstruction
software.

5. Example configuration and results

Since FAMOS provides ORCA compliant interfaces
no change is required to the part of code that uses
the objects (e.g. TTracks) when changing from full
to fast reconstruction. However, instantiation of the
FAMOS objects and their registration to the frame-
work must be done. For Tracker tracks to be provided
by the FATSIM simulation module this looks like the
following:

myTrackFinder = new RecTrackFromRawParticle(
new FATSIM( &myPtEG, &myAngleEG,
dmyEff,
myImpactParameterEG)) ;
myTrackReconstructor = new FastTrackReconstructor (
myTrackFinder, "FATSIM");
...]
RecCollection<TTrack> MyTracks(ev->recEvent(),
"FATSIM");

The first lines instantiates an ORCA track-finding
object with the FATSIM simulation module as argu-

ment. This simulation module uses internal classes
LanyOtseryes (S EvermProsg ™
Reclinil
THoUnia Tl

Figure 3: The relations between the simulator modules
and the ORCA mechanism.
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that provide the parameterizations of transverse mo-
mentum, angular distributions and the efficiencies.
Then the ORCA track reconstructor is created an a
string - “FATSIM” - is used to identify it. Creating
the collections of TTrack specifying the same string
will issue the reconstruction on demand, i.e. when
iterated over the collection.

This can be compared to the registration of the reg-
ular track finding algorithm:

myTrackFinder = new TrackReconstructor(
new CombinatorialTrackFinder,
"FkFTracks") ;
RecCollection<TTrack> MyTracks(ev->recEvent(),
"FkFTracks") ;

Again a track-finder is instantiated and then a col-
lection. For the collection the ONLY difference is the
string to specify which reconstruction algorithm is to
be used when the collection is accessed.
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Figure 4: Comparison between tracks obtained from full
simulation (CMSIM) and reconstruction (ORCAG6) to
tracks obtained from FAMOS for the same Monte-Carlo
events.

Similarly, when linking the executable different sets
of libraries must be selected when using full or fast
reconstruction. The main use-case is to run the fast
simulation and reconstruction directly with a Monte-
Carlo generator as input. However, it is also possi-
ble to use the FAMOS in parallel to a regular full
reconstruction from a prepared database. This is
especially useful for direct comparison between full
and fast simulation and reconstruction. The origi-
nal Monte-Carlo event that was simulated in a time-
consuming process is stored in the database, read
from there by the FamosEventMgr and then handed
to the fast simulators. That allows for example to an-
alyze two RecCollections of TTracks in the same
program since the different collections are mapped
via the string identifier to different track-finding algo-
rithms: detailed reconstruction with RecHits as input
and FAMOS with the Monte-Carlo event as input.
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6. Timing

The main aim of the current first implementation
was to achieve the highest possible speed with rea-
sonable agreement. The measured results for high-
multiplicity events without minimum bias pileup is
shown in Table 6.

Fraction|time/event [ms]
Framework 3% 2
Pythia 40% 25
FTSim 9% 6
FastCalorimetry 35% 22
Muon Lvl-1 5% 3
Muon reconstr. 9% 6
CMSIM+ORCA | 312500% 200000
Material effects prototype 2000

Table I Measured time distribution for FAMOS
compared with full simulation and reconstruction.

The FAMOS time is dominated by the Monte-Carlo
generator (Pythia) and the Calorimeter simulation
module. All other modules - in particular the FAMOS
framework (FamosEventMgr) contribute only insignif-
icantly. The performance achieved is more than 3000
times faster than the detailed simulation and recon-
struction.

It is possible to simulate the CMS detector and
in particular the material effects more precisely.
A first prototype has been developed that takes
pair production and Bremsstrahlung into account.
Without optimization for performance this reduces
the speed of FAMOS to be only factor 100 faster
than CMSIM+ORCA. The modularity - this is
just one additional simulation module to register to
FamosEventMgr - give the user full flexibility to adapt
the simulation to the precision his concrete physics
analysis requires.

7. Summary

FAMOS is a high-performing, flexible and dynami-
cally configurable mini-framework for fast simulation
and reconstruction. It is fully integrated in the gen-
eral CMS framework but the components can be used
independently. It is possible to mix full and fast sim-
ulation with minimal changes to the user code. The
first modules implemented provide high-level recon-
structed objects (Tracks, Muon, Muon Lvl-1 trigger,
Calorimeter clusters) at reasonable agreement in pre-
cision about 3000 times faster than full simulation and
reconstruction.

In future fast modules for individual steps in the
analysis chain will be developed and geometry reading
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will be using the same XML description as used by the
full simulation to ensure consistency.
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