
Reconstruction and Analysis on Demand: A Success Story
C. D. Jones
Cornell University, Ithaca, NY 14853, USA

The traditional design of an HEP reconstruction system partitions the problem into a series of modules. A
reconstruction job is then just a sequence of modules run in a particular order with each module reading data
from the event and placing new data into the event. The problem with such a design is it is up to the user to
place the modules in the correct order and CPU time is wasted calculating quantities that may not be used if
the event is rejected based on some other criteria.
The CLEO III analysis/reconstruction system takes a different approach: on demand processing (otherwise
known as lazy evaluation). Jobs are still partitioned into smaller components which we call Producers. However,
Producers register what data they produce. The first time a datum is requested for an event the Producer’s
algorithm is run. Sources work similarly, registering what data they can retrieve but delaying retrieval until the
data is requested. Data analysis and filtering are done via a separate set of modules called Processors.
We have been using this system for four years and it has been a huge success. The data access implementation has
proven to be very easy to use and extremely efficient. Reconstruction jobs are easy to configure and additional
event filters can be added efficiently and robustly – access to correct data is automatically guaranteed. The true
test of success: physicists have embraced this model for analysis even though the old model is still supported.

1. INTRODUCTION

To deal with the vast amounts of data collected,
HEP experiments usually write their own data access
software. This software has to be used for a multitude
of tasks: calibration, reconstruction, monte carlo gen-
eration, and analysis. In this paper we compare the
’standard’ data access system design to the CLEO III
design which uses an ’on-demand’ mechanism known
as lazy evaluation. In addition, we describe our ex-
perience of having used the CLEO III system for the
past four years and in particular the response of the
physicists who use this system.

2. STANDARD SYSTEM

2.1. Description

The standard system design [1, 2] that most HEP
experiments use for their data access software is pri-
marily designed to deal with the task of reconstruc-
tion. For this task, all data objects need to be created
for each event that is being processed, since it is the
ultimate goal of this task to write all those data ob-
jects to persistent storage.

In the standard system design, each processing step
is partitioned into its own software Module. For exam-
ple, the track finding algorithm and the track fitting
algorithm are placed into their own software Modules.
In addition, there are Input Modules responsible for
reading objects from persistent storage and Output
Modules responsible for writing objects to persistent
storage.

To form an actual processing job, the software Mod-
ules are run in a user-specified sequence. When it is
a Module’s turn to run, that Module executes its al-
gorithm and then places its data into the event. In

addition, if a Module for some reason rejects that
event, then the Module can tell the system to stop
processing that event (thereby skipping the process-
ing of all Modules appearing later in the sequence)
and to restart the sequence with the next event.

A simple example of a processing job run using the
standard system design is shown in Figure 1. In this
example four different Modules are used to process an
event. The first Module is the Input Module which
reads objects from a persistent object store (in this
case it would be objects corresponding to hits that
have been calibrated) and then inserts those objects
into the event. The second Module in the sequence
pulls the calibrated hits from the event and runs the
track finding algorithm which then inserts the found
tracks into the event. The third Module pulls the cali-
brated hits and the found tracks out of the event, refits
the tracks and then inserts the refitted tracks into the
event. The final Module is the Output Module which
pulls objects out of the event and writes them to a
persistent object store.

2.2. Critique

The standard system design has worked well for
many experiments for a number of reasons. One of
the main reasons is it has a very simple conceptual
model for how a job actually runs. The job simply
runs a series of algorithms that are in a user defined
sequence. This simple conceptual model makes the
physicists feel confident that they know how the sys-
tem works which in turn aids in acceptance of the
system. Another reason experiments use the standard
design is that jobs are fairly easy to debug since it is
easy to determine which module had a problem.

Unfortunately, the simplicity of the system leads
to a number of problems, particularly when the sys-
tem is used for analysis. One of the main problems is

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THJT002 ePrint hep-ex/0305090



Input
Module

Track Finder Track Fitter Output
Module

Figure 1: Example standard system processing job.

the physicists using the system must know the inter-
module dependencies in order to place them in the cor-
rect sequence. To avoid this problem, physicists often
run jobs with many Modules they do not need in order
to avoid missing a Module they might need. Another
problem is that optimization of the Module sequence
must be done by hand. For example, reconstruction
jobs often have filter Modules which stop the process-
ing of events that contain no interesting physics (e.g.
accelerator related backgrounds). To get the best per-
formance for the reconstruction job, only the Modules
creating the data needed by the filter Module should
be ahead of the filter Module in the Module sequence.
Since the Module sequence must be explicitly set by
the physicist it is up to the physicist to find the opti-
mal Module sequence. A final problem is reading back
from storage is almost always inefficient. The reason
is that all the objects from storage must be created
at the beginning of the event processing, since that is
where the Input Module is in the sequence, even if the
job does not use all objects.

3. ON-DEMAND SYSTEM

3.1. Description

The on-demand system used by the CLEO III ex-
periment [3] was primarily designed to be used for
analysis batch processing. The main difference be-
tween reconstruction and analysis processing is that
in analysis processing not all data objects need to be
created every event. Therefore the on-demand system
only creates data objects as they are requested.

Similar to the standard system, the on-demand sys-
tem breaks the processing task into separate Modules.
But in the on-demand system the types of Modules
are further refined into two categories , each with two
Module types.

Provider: return data when requested.

Source: reads data from a persistent store.

Producer: creates data on demand by running
an algorithm.

Requestors: sequentially run for each new event.

Processor: analyzes and filters events.

Sink: writes data to a persistent store.

Since data objects are only created when requested,
data providers register with the system what data
they can provide. This registration is how the system
knows which provider to request the data from when
another Module requests that type of data. Since the
method used to create a data object (either by reading
from a persistent store or by running an algorithm) is
activated the first time that data object is requested,
the processing sequence is now set implicitly by the
order of data requests and not explicitly by the physi-
cist. Essentially the processing sequence is automati-
cally determined by the system without the need for
manual intervention.

While the data providers set what data is available
in a job, what is done with that data is determined by
the data requestors. Processors analyze events (e.g.
fill histograms or ntuples) and/or filter events of in-
terest by stopping further processing of certain events.
In this system only Processors can stop the process-
ing of an event. The order of the Processors must be
explicitly set by the physicist since different Proces-
sor orders can be meaningful and only the physicist
knows which order is proper for the job. For example,
a physicist could place the event display either before
or after an event filter to either see all the events going
into the filter or to just see the events that pass the
filter. In contrast, Sinks are always at the end of the
processing order and therefore only write out data for
events that pass all the filters.

Figure 2 shows how an event is processed in the
on-demand system. A Source determines the next
event to be processed (but does not fill that event
with data). This event is passed to the first Processor
in the sequence. If that Processor does not reject that
event, the event is passed to the following Processor in
the chain. This continues until one of the Processors
rejects the event, at which time the system goes back
to the Source to get a new event, or all Processors
have been run. If no Processor rejects the event, the
event is given to the Sinks for storage.

3.2. Data Model

A data access system provides not only a mecha-
nism for accessing data but also a data model that
describes how the data is organized. The CLEO III

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THJT002 ePrint hep-ex/0305090



Source Processor A Processor B Sink

Figure 2: Example on-demand system processing job.

data model is unusual because it provides a unified
model for all data so, for example, event data and
calibration data are treated in the same manner [4].

Figure 3 gives a graphical view of the CLEO III
Frame/Stream data model. In this data model, all
data items are held in Records. Data items are
grouped into Records based on the ’life-time’ of the
data. For example, since both fitted tracks and
electro-magnetic showers are only relevant for the in-
stant an event is recorded, both those data items are
placed in the event Record. In contrast, the energy of
the beams in the accelerator’s storage ring is constant
through-out a data run so the beam energy is held in
the begin run Record rather than the event Record.
Streams are a time ordered sequence of Records of the
same type. For example, the event Stream holds all
the event Records in the proper time order. The last
concept in the data model is the Frame. A Frame
is a collection of Records that describe the state of
the detector at an instant in time. For example, to
understand the data in event Record ’F’ requires the
data at begin run Record ’B’, geometry Record ’B’
and calibration Record ’A’.

Because all data are accessed in the exact same way,
the physicist’s learning curve is reduced. For exam-
ple, accessing fitted tracks or detector alignment data
are done in exactly the same manner. First the physi-
cist must get the appropriate Record from the Frame.
Second, he must ask the Record to return the data
in question. Also, since the event Record is no differ-
ent from any other Record, physicists can study any
type of data in the exact same way they study event
data. For example, a physicist could analyze the way
the alignment of the detector changes with time by
creating a Processor that analyzes detector alignment
Records rather than event Records.

Since the Frame contains all data relevant for any
processing job, the system is designed so that the dif-
ferent component Modules that make up a job can
only communicate with each other via the data they
have registered in the Frame. In a sense, this makes
the Frame the communication bus for the system. Us-
ing the Frame as the communication bus allows us to
avoid explicit dependencies between Modules. Mod-
ules are only dependent on the data objects they use
or produce, and not on how those data objects are
created.

3.3. On-Demand Mechanism

Since the CLEO III system uses on-demand process-
ing, we need a mechanism to communicate between
the data requestors and the data producers. The
mechanism we use employs Proxies. A data provider
registers a Proxy for each data type the provider can
create. These Proxies are placed in the appropriate
Record and are indexed by a key. The key is com-
posed of three different tags:

Type: the class type of the object returned by the
Proxy

Usage: an optional compile-time string describing
the use of the object

Production: an optional run-time settable string.

The two string tags used in the key allow a Record
to contain many objects of the same class type. The
Production tag allows us to compare the results of two
providers which create data with the same Type and
Usage tags.

Physicists access the data via a type-safe templated
function call. E.g.,

List<FitPion> pions;
extract(iFrame.record(kEvent), pions);

In this example, the first line defines a variable
named ’pions’ to hold a list of FitPions. In the sec-
ond line, the templated ’extract’ function is given the
event Record (which is obtained from the Frame via
the member function ’record’) and the ’pions’ vari-
able. The Type tag is determined at compile time
based on the type of the ’pions’ variable. The Usage
and Production tags are set to their default values.
Once the key is built the extract call asks the Record
for the Proxy. After the Proxy is obtained, the extract
call tells the Proxy to run the algorithm to deliver the
data. If the Proxy’s algorithm runs successfully, the
data is cached in case another request for the data oc-
curs later in the job. If an error occurs while trying to
obtain the data, an appropriate exception is thrown.

Two examples of the on-demand system in action
are shown in Figure 4. In the left hand example,
the Processor SelectBtoKPi gets FitPions by running

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THJT002 ePrint hep-ex/0305090



Stream

Begin Run

End Run

Event

A

A

B

A

B C D E F G H I

C

CB

Time

Geometry A B

Calibration A B

Record

Frame

B

F

B

A

Figure 3: The CLEO III data model.

SelectBtoKPiProcessor

Producer

Source

Track Fitter

 FitPionsProxy
 FitKaonsProxy
 ...

Track Finder

 TracksProxy

Hit Calibrator

 CalibratedHitsProxy

Raw Data File

 RawDataProxy

Calibration DB

 PedestalProxy
 AlignmentProxy
 ...

SelectBtoKPi

Event Database

 FitPionsProxy
 FitKaonsProxy
RawDataProxy
 ...

Data Via Algorithm Data Via Source

Figure 4: Examples of the on-demand system. On the left PionFits are obtained by running algorithms while on the
right they are obtained from the event database.

the full tracking reconstruction algorithm. In the ex-
ample, The FitPionsProxy extracts Tracks and Cali-
bratedHits. The TracksProxy also extracts the Cal-
ibratedHits. The CalibratedHitsProxy then extracts
the RawData (which is obtained from a file) and the
pedestal and alignment calibrations which are stored
in the Calibration database. In the right hand ex-
ample, the exact same SelectBtoKPi, run in a differ-
ent job, now gets its FitPions directly from the event
database. Through the use of dynamic loading, the
exact same SelectBtoKPi binary object can be run in
the two different jobs without the need to relink the
main executable.

3.4. Critique

The on-demand design has many positive features.
First, this design supports data access for all HEP
jobs: online software trigger, online data quality mon-
itoring, online event display, calibration, reconstruc-
tion, MC generation, offline event display and physics
analysis. Second, in contrast to the standard design,
the physicist does not need to explicitly set the proper
procedural order of the job. The proper order is de-
termined automatically simply by the order in which
data is requested. Third, the design optimizes access
from storage. At the beginning of processing a Record,
a source only needs to say when a new Record is avail-
able. Decoding or retrieval of the data associated with
that Record can be deferred until the first request for
the data.

However, the added complexity of not explicitly set-

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THJT002 ePrint hep-ex/0305090



ting the procedural order does make debugging and
profiling more challenging. Good encapsulation of
Modules through the Frame mechanism ensures that
problems are isolated within a Module and are not
from Module to Module interactions. With such iso-
lation, you only need to know which Module you are
in when a problem arises in order to know where to
start debugging. For extremely serious problems that
cause a signal to be thrown by the operating system
(e.g., a memory access violation), looking at the last
few entries in a function call trace-back in a debugger
is usually sufficient to isolate the error. For standard
run-time problems we have found that the use of ex-
ceptions is critical in understanding the system. The
first implementation of our system used null pointers
to data to signify that a problem had occurred during
an attempted data access. This lead to a number of
problems:

• it was impossible to know why a problem oc-
curred. E.g., if FitPions could not be accessed
was it because track fitting failed or because no
calibrated hits were available?

• developers had to propagate any error encoun-
tered while accessing data needed for their algo-
rithm.

• the return value of a data access had to be
checked to be certain that data was obtained.

Using exceptions solved all of these problems. Now
when an exception occurs, the type of and message
in the exception explain the problem. Additionally,
only in blocks of code that catch the exception and
continue would it be necessary to check to see if the
returned data was valid. To further aid in understand-
ing what happened when an exception is thrown, we
created a stack that holds the present data request
chain. When an exception is caught by the system
(because no Module caught the exception), we print
a message such as

ERROR: caught an exception:
"Starting from SelectBtoKPi extracted
[1] type "List<FitPion>"

usage ""
production ""

[2] type "List<Track>"
usage ""
production ""

[3] type "List<CalibratedHit>"
usage ""
production "" <== exception occurred

No data "List<CalibratedHit>" "" ""
in Record event.

Please add a Source or Producer to your
job which can deliver this data."

and then either terminate the job or skip this event
and begin processing the next Record.

4. WHAT WE HAVE LEARNED

We have been using a version of this system since
September 1998. During that time we have gained
a great deal of experience with an on-demand sys-
tem. One of the most important findings is that the
on-demand mechanism can be made fast. We have
found that the Proxy lookup takes less than 1 part
in 10−7 of the CPU time on a simple job that pro-
cessed 2000 events/s on a moderately powerful com-
puter. Another finding is that cyclical dependencies
(a Proxy that winds up extracting its own data) are
easy to find and fix. We only have had one cycli-
cal dependency and it showed up on the first test of
the program by causing a stack overflow. In addition,
we have found that we do not need to modify data
once it has been created, our Records hold immutable
data. In the cases where we need a new version of
the data, we put the new data into the Record with a
different key. One surprising finding is the on-demand
system automatically optimizes the performance of re-
construction jobs. For example, it was trivial to add a
filter to reconstruction which removed junk events by
using found tracks rather than fitted tracks. The on-
demand system made sure only the algorithms needed
for the junk filter are run so that the minimum time
is spent processing the event before the filter decides
whether to keep it. We have also found that the best
way to speed up analyses is to store many small ob-
jects. That way the job only needs to retrieve and
decode the data needed for the current job.

Because the on-demand design is so different from
the standard design, we have been very concerned
with physicists’ reaction to the system, particularly
since CLEO’s previous data access system was a stan-
dard design implemented in FORTRAN. In general,
their response has been very positive to the new sys-
tem. The programmers of the reconstruction code
like the system. We made it easy for them to get
started by having code skeleton generators to make
a Proxy, Producer or Processor. By using the gen-
erators, coders only have to write the code specific
to their algorithm and not write the code required to
work within the system. In addition, the reconstruc-
tion coders found it very easy to test their code since
they could easily swap Modules to compare the re-
sults of the jobs. This is extremely easy in our system
since we use dynamic loading to load in the differ-
ent Modules a job uses. Therefore when developers
are making changes they only need to recompile their
own Module, not relink the entire system.

To ease the transition for our physicists from the
old standard system to the new on-demand system,

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THJT002 ePrint hep-ex/0305090



we made sure that they could still program their anal-
ysis the ’old way’, i.e. all analysis code in the ’event’
routine. However, some of our analysis coders are now
pushing the bounds of the system. These physicists
are placing selectors (e.g., cuts for tracks) in Produc-
ers. This allows them to reuse the same binary for
many different analyses. We are even seeing physi-
cists share these selector binaries. So once selections
are done in Producers, the physicists only use Proces-
sors to fill histograms or ntuples and to filter events.
Then if a physicist stores the results of her selections
into a persistent store, any subsequent pass through
the data only requires reading back the selections from
storage (and not rerunning the algorithm) and rerun-
ning the Processor.

5. CONCLUSION

Our five years of experience with using an on-
demand system has shown us it is possible to build
such a system so that it is efficient, debuggable, ca-
pable of dealing with all the different types of data
(not just data in an event), easy to write components,
good for reconstruction and acceptable to physicists.

We believe that several reasons contributed to our
success. The first is our use of skeleton code genera-

tors, so that physicists only have to write new code,
not infrastructure ’glue’. Second, users do not need to
register what data they may request, only what data
they provide. This makes life easier for physicists since
data reads occur more frequently than writes. And
third, we use a simple rule for when algorithms are
run: if a Producer is added it takes precedence over a
Source that can deliver the same data.

Acknowledgments

This work was supported by the National Science
Foundation.

References

[1] R. Itoh, BASF- BELLE analysiS Framework
CHEP97, Berlin, Germany, 1997.

[2] B. May, M. Paterno The D0 Event Data Model
CHEP98, Chicago, IL, USA, 1998.

[3] http://www.lepp.cornell.edu/public/CLEO.
[4] P. Avery, C. Jones, M. Lohner, S. Patton, Design

and Implementation of the CLEO III Data Access
Model CHEP97, Berlin, Germany, 1997.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6THJT002 ePrint hep-ex/0305090


