
Commissioning the CDF Offline Software
Elizabeth Sexton-Kennedy, Pasha Murat
FNAL, CD/CDF, Batavia, IL 60510, USA

CDF II is one of the two large collider experiments at Fermilab’s Tevatron. Over the past two years we have
commissioned the offline computing system. A task that has involved bringing up hundreds of computers and
millions of lines of C++ software. This paper reports on this experience, concentrating on the software aspects
of the project. We will highlight some of the successes as well as describe some of the work still to do.

1. SCOPE AND SCALE OF THE OFFLINE
SOFTWARE PROJECT

The CDF offline involves hundreds of collaborators
from 56 different institutions from all over the world.
While not ever collaborator has directly contributed
software, all must use the software and help debug
it. The current code set consists of tens of millions of
mostly C++ code, organized into 294 packages. These
packages are further organized into major reconstruc-
tion, simulation, and physics categories: Tracking,
Calorimetry, Muon, Time of Flight, Luminosity coun-
ters, Top, Tau, Electroweak, B physics, and infras-
tructure. At CDF the offline includes all of the soft-
ware and computing need for the real time software
trigger (the Level3 trigger), the online monitoring of
the detector, the primary reconstruction, the detec-
tor simulation, physics group analysis software, tools
such as the detector event display and software used to
measure the performance of the above, such as track-
ing efficiency and purity.

2. HISTORY OF THE PROJECT

2.1. Manpower

In 1996 when work on the run 2 offline started, very
few people at CDF knew C++. The advantages of us-
ing a language that supported memory management
was considered large enough to out way the cost of
learning C++. We claimed that we would start by
writing all of the infrastructure code in C++ but still
make provisions for the physics code to be written
in f77. People involved with the run 1 experiment
wanted to reuse as much of the run 1 code as possi-
ble, so the code was wrapped into C callable routines
and fed it’s input data via the C++ infrastructure.
Output was in the form of arrays that were also man-
aged by the infrastructure. As new people entered the
project there was a desire to replace this code with
algorithms written in C++ so that it would be main-
tainable. This happened for every subsystem until
everything was C++. The next generation of main-
tainers after this second round has not felt it necessary
to rewrite everything. We now have people entering

the project with prior C++ experience from other ex-
periments. During the development of the code we
never had enough people to work on all of the tasks
we wanted done. Strong leadership to prioritize dur-
ing these early times was essential. At any one time
we had about 6 to 10 highly productive developers,
one per subsystem.

2.2. Releases and Transitions

The release schedule reflects the pace of develop-
ment and managements decisions about how to best
serve our users. Our users were the detector commis-
sioning physicists, and farm and data handling hard-
ware developers. During the first year that we started
making major releases, 1999, there were 5 releases re-
flecting the difficulty of these first integrations. In
2000 and 2001 there were about 10 each year. This
was our time of extreme programing. Many of the ma-
jor rewrites occurred at this time, including a change
from a Fortran array based EDM (Event Data Model)
to a root based EDM. At the same time the experi-
ment was commissioning the detector and these cus-
tomers required that we keep the code working for
their use. For this reason many subsystem developers
were maintaining two versions of the code for their sys-
tem. One of the advantages of this situation was that
both versions could be run to see if they resulted in
the same answer. Many bugs were discovered while in-
vestigating differing answers. Some were in the C++
but some were found in the run1 Fortran code as well.
In 2002 there were about 5 releases. This reflected the
need for stability in preparation for presenting physics
results at the early 2003 winter conferences.

2.3. Collaboration with Others

Throughout the history of the project CDF was
greatly aided by using the work of others outside
of CDF. BaBar donated their framework, EvtGen
and ideas. The support of the root team espe-
cially Phillippe Canal was essential. Many of the
Zoom/CLHEP classes we use were developed by those
groups at our request. Many of the classes in exis-
tence before CDF started developing C++ software

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint physics/0306112THJT001



were greatly improved in performance through collab-
oration with the supporters of CLHEP. Unfortunately
our compiler vendor, KAI was also a collaborator in
that we had to report bugs to them. Despite this, the
decision to use KAI was not a bad one. It allowed
us to write C++ standard code much earlier then we
would otherwise have been able to. This has served
us well in transitioning back to g++ now that KAI is
becoming unsupported.

3. DEVELOPMENT OF STABLE
OPERATIONS

The most important step in creating stability and
robustness in the software system was the develop-
ment of rules and procedures. There are rules about
how releases are put together and what can be inte-
grated at different phases of the cycle. There are well
defined procedures for validation and regression test-
ing of all new releases. These are documented on the
web and the manpower for doing these tasks comes
from the collaboration as part of an offline shift. A
shifter is given recipes for running purify, debuggers
and software management tools as well as instructions
for running the tests. Monitoring the running of au-
tomated systems like the reconstruction farms is also
part of the job. Use of a bug tracking tool has also
greatly aided in finding problems and documenting
solutions for out users. The shifter can try to answer
questions that are sent to the list, or forward them to
the relevant system expert.

4. LESSONS LEARNED AND SURPRISES

Here is a list of some of the things that were surpris-
ing and were learned over the course of the project:

• You never really understand a problem until it
is solved once. The strategy of studying and
recoding run 1 code in C++ for run 2 served us
well in many areas of the project.

• Performance has not been a problem, wasteful
copying was eliminated early in the development
of the code and there are still gains that we can
make. Choosing efficient algorithms gains more
performance the hand optimizing the code.

• Keep the system clean in terms of physical de-
sign and organization. Physics analysis codes
will follow the patterns of the reconstruction and
be more generally usable if the reconstruction is
kept clean.

• A code browser is important for both the devel-
opers and users of the software system.

• Beware of code generation, it can produce code
bloat if not done carefully.

• Memory leaks are supposed to be the biggest
problem in large C++ systems, however for us
uninitialized variables has been a bigger prob-
lem. Memory leaks can be traced with stan-
dard tools. Uninitialized memory reports from
these same tools are too numerous to be useful.
Many of these reports are completely harmless
and finding the bad ones buried underneath is
very hard. We have had releases in which the
farms operation of the reconstruction was tested
to be 1 crash in a million events. The same exact
code when recompiled with a shorter name for
the file system it lived on crashed in less then a
thousand events processed. This was traced to
an error in using uninitialized memory.

• Start commissioning as early as possible. Mock
data challenges didn’t completely prepare us for
the turn on of real data. Count on having to
change things once you have really customers
with real needs.

• Many people will leave the project one year af-
ter the first physics data arrives. If faced with
the choice of two solutions to a problem always
choose the most maintainable one. Insure that
there is sufficient overlap between the original
developers of the code and the junior people who
will take over the maintenance of it.

5. THE CDF OFFLINE SOFTWARE IS A
SUCCESS

The CDF offline software system was flexible and
serviceable. It was able to help commission the de-
tector even while it was undergoing large transitions
to improved software. It helped take the data, recon-
struct it, and perform the physics analysis on it in a
timely manner.

Acknowledgments

The authors wish to thank all of the people who
worked on the CDF offline software.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint physics/0306112THJT001


