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The High Level Trigger (HLT) of the ALICE experiment requires massive parallel computing. One of the main
tasks of the HLT system is two-dimensional cluster finding on raw data of the Time Projection Chamber (TPC),
which is the main data source of ALICE. To reduce the number of computing nodes needed in the HLT farm,
FPGAs, which are an intrinsic part of the system, will be utilized for this task. VHDL code implementing
the fast cluster finder algorithm, has been written, a testbed for functional verification of the code has been
developed, and the code has been synthesized.

1. Introduction

The central detectors of the ALICE experiment [1],
mainly its large Time Projection Chamber (TPC) [2],
will produce a data size of up to 75 MByte/event at
an event rate of up to 200 Hz resulting in a data rate
of ∼15 GByte/sec. This exceeds the foreseen mass
storage bandwidth of 1.25 GByte/sec by one order
of magnitude. The High Level Trigger (HLT), a mas-
sive parallel computing system, processes the data on-
line doing pattern recognition and simple event recon-
struction almost in real-time, in order to select inter-
esting (sub)events, or to compress data efficiently by
modeling techniques [3], [4]. The system will consist
of a farm of clustered SMP-nodes based on off-the-
shelf PCs connected with a high bandwidth low la-
tency network. The system nodes will be interfaced to
the front-end electronics via optical fibers connecting
to their internal PCI-bus, using a custom PCI receiver
card for the detector readout (RORC) [5].

Such PCI boards, carrying an ALTERA APEX
FPGA, SRAM, DRAM and a CPLD and FLASH for
configuration have been produced and are operational.
Most of the local pattern recognition is done using the
FPGA co-processor while the data is being transferred
to the memory of the corresponding nodes.

Focusing on TPC tracking, in the conventional way
of event reconstruction one first calculates the clus-
ter centroids with a Cluster Finder and then uses a
Track Follower on these space points to extract the
track parameters [6], [7]. Conventional cluster finding
reconstructs positions of space points from raw data,
which are interpreted as the crossing points between
tracks and the center of padrows. The cluster cen-
troids are calculated as the weighted charge mean in
pad and time direction. The algorithm typically is
suited for low multiplicity data, because overlapping
clusters are not properly handled. By splitting clus-

ters into smaller clusters at local minima in time or
pad direction a simple deconvolution scheme can be
applied and the method becomes usable also for higher
multiplicities of up to dN/dy of 3000 [3].

To reduce data shipping and communication over-
head in the HLT network system, most of the cluster
finding will be done locally defined by the readout
granularity of the readout chambers. The TPC front-
end electronic defines 216 data volumes, which are
being read out over single fibers into the RORC.

We therefore implement the Cluster Finder directly
on the FPGA co-processor of these receiving nodes
while reading out the data. The algorithm is highly
local, so that each sector and even each padrow can
be processed independently, which is another reason
to use a circuit for the parallel computation of the
space points.

2. The Cluster Finder Algorithm

The data input to the cluster finder is a zero sup-
pressed, time-ordered list of charge values on succes-
sive pads and padrows. The charges are ADC values
in the range 0 to 1023 drawn as squares in figure 1.
By the nature of the data readout and representation,
they are placed at integer time, pad and padrow co-
ordinates.

Finding the particle crossing points breaks down
into two tasks: Determine which ADC values belong
together, forming a cluster, and then calculate the
center of gravity as the weighted mean using

GP =
∑

qipi

/
Q (1)

GT =
∑

qiti

/
Q , (2)

where GT is the center of gravity in the time-direction,
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Figure 1: Input charge values in the time-pad plane

Figure 2: Grouping input data into sequences, and
merging neighboring sequences into clusters.

GP in the pad direction, Q =
∑

qi is the total charge
of the cluster.

2.1. Grouping charges into sequences

Because of the ALTRO[8] data format, we choose to
order the input data first along the time direction into
sequences, before we merge sequences on neighboring
pads into clusters.

A sequence is regarded as a continuous (vertical)
stack of integer numbers. They are shown in figure 2.
For each sequence the center of gravity is calculated
using eqn. (2). The result is a decimal number. This
is illustrated by the horizontal black lines.

2.2. Merging neighboring sequences

Searching along the pad direction (from left to right
in the figures), sequences on adjacent pads are merged
into a starting cluster if the difference in the center of
gravity is less than a selectable match distance param-
eter1. The center of gravity value of the last appended
(rightmost) sequence is kept and used when searching

1Typically we set the match distance parameter to 2.

Figure 3: Finished clusters in the time-pad plane, where
the black dots in the middle mark the centroid. a and b
specify the absolute position of the cluster, ai are the
time positions of the sequences that form the cluster.

Figure 4: The definition of a general cluster used to
simplify the algorithm for the FPGA

for matches on the following pad, also shown in fig-
ure 2.

A cluster that has no match on the next pad is
regarded as finished. If it is above the noise thresh-
old (requirements on size and total charge), the fi-
nal center of gravities in time and pad according to
eqns. (1) and (2) are calculated. This is –besides other
definitions– illustrated in figure 3. The space-point,
given by these two values transformed into real space,
and the total charge of the cluster are then used for
tracking [6].

3. Algorithm adaptions for VHDL

To transform the algorithm into a version which
is suitable for a computation in hardware, we define
a general cluster as a matrix in the time-pad plane
according to figure 4.

Of course, clusters can be any size and shape and
can be placed anywhere within the time-pad plane.
The upper left corner is chosen as the reference point
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since this charge will enter the cluster finder circuit
first. The values a and b define the absolute placement
of the corner, the size of the cluster is given by m and
n. Allowing charge values to be zero covers varying
shapes, but since only one sequence per pad is merged,
zero charge values in the interior of the clusters can
not occur.

Using the general cluster definition, the total charge
Q is the sum of the total sequence charges Qj accord-
ing to

Q =
b+n∑
j=b

Qj where Qj =
m∑

i=a−m

qij (3)

and the formulas for the center of gravity change into

GP =
b+n∑
j=b

jQj

/
Q (4)

GT =
b+n∑
j=b

a∑
i=a−m

iqij

/
Q (5)

By calculating the center of gravity relative to the
upper left corner of the cluster, the multiplicands i
and j in (4) and (5), which start counting from a and
b respectively, are exchanged by indexes starting at 0.
Using the definitions (3) and figure 3, we get for the
center of gravities the following two equations:

GP = b +
n∑

k=0

kQb+k

/
Q (6)

GT = a −
b+n∑
j=b

m∑
k=0

kq(aj−k)j + (a − aj)Qj

/
Q(7)

These formulas are better suited for the FPGA im-
plementation, because we have reduced the number
of multiplications, and for the remaining the range of
one of the multiplicands k and (a − aj) is restricted.
It is kept within the range of the height and width
of a cluster. When the relative centroid has been de-
termined, it has to be transformed to the absolute
coordinate system (using a and b). Thus, the FPGA
implementation has to calculate a, b, Q and the result
of the two sums. Per cluster these 5 integer values will
be sent to the host, which in turn uses (6) and (7) for
the final result.

4. VHDL implementation

The FPGA implementation has four components as
shown in figure 5. The two main parts are the Decoder,
which groups the charges into sequences (section 2.1),
and the Merger, which merges the sequences into clus-
ters (section 2.2).

Figure 5: The block diagram of the FPGA cluster finder

4.1. Decoder

The Decoder handles the format of the incoming
data and computes properties of the sequences. We
see from (7) that two parts are “local” to every se-
quence. These are Qj and

∑m
k=0 kq(aj−k)j , where the

total charge of the sequence is also used in (6). Calcu-
lation of these two sequence properties need the indi-
vidual charges qij but does not involve computations
that require several clock cycles. The two properties
are therefore computed as the charges enter the cir-
cuit, so that the charges have not to be stored. Ad-
ditionally, as required by the algorithm, the center of
gravity of the sequences needs to be calculated. Only
calculating the geometric middle, is sufficiently precise
and faster than the exact computation.

When all information about a sequence is assem-
bled, it will be sent to the second part, the Merger.
That way the narrow, fixed-rate data stream is con-
verted into wide data words of varying rate. That rate
is dependent on the length of the sequences. Long se-
quences give low data rate and vice versa. Because
of this, and also because of varying processing speed
of the Merger, a small FIFO is used to buffer the se-
quence data. Since the Decoder handles data in real
time as they come, the sequences will also be ordered
by ascending row, ascending pad and descending time.

4.2. Merger

The Merger decides which sequences belong to-
gether and merges them. The merging in effect in-
creases the k index of (6) and j index of (7) by one,
adding one more sequence to the sums in the numer-
ators. It also updates the total charge of the cluster
Q.

Since the Merger is processing the data in arriving
order, merging will be done with sequences on the pre-
ceding pads. And more precisely, since by definition a
cluster does not have holes, only the immediately pre-
ceding pad needs to be searched. Therefore we need
only two lists in memory (see figure 6). One list con-
tains the started cluster of the previous pad; the other
list contains started clusters already processed at the
current pad. Clusters are removed from the search
range when a match is found or when the cluster is
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Figure 6: The ring buffer storing clusters of the previous
and the actual pad.

finished. Clusters are inserted in the input range af-
ter merging or when starting a new cluster. The list
of clusters on the current pad, the input range, will
be searched when a sequence on the next pad arrives.
When that happens, there will be no matches for the
remaining clusters on the preceding pad. Hence we
output clusters in the old search range and exchange
the lists. The old list becomes free memory, the cur-
rent list becomes the old, and a new current list with
no entries is created. At the end of a row or when a
pad is skipped the clusters in both the lists must be
finished. All the clusters are sent and both the lists
are emptied. The two lists are implemented as a ring
buffer stored in a dual-port RAM. The beginning and
ending of the lists is marked by three memory pointers
(begin, end and insert pointer).

The state machine of the Merger is shown in fig-
ure 7. To prevent overflowing the FIFO, the number
of states the Merger machine needs to visit for each
sequence is kept as low as possible. At the same time
every state must be as simple as possible to enable
a high clock rate. The ring buffer causes systematic
memory accesses; read and write addresses are either
unchanged or incremented. To keep the number of
states down, the computations of merging are done in
parallel, thereby using more of the FPGA resources.
The resources needed are two adders (signed), and two
“smart multipliers” (see 4.3).

There are three different types of states: States that
remove a cluster from the search range sending it to
the output (or discarding it if it is a noise cluster
or overflow occurred), states that do arithmetic and
states that insert a new cluster into the list of the
current pad.

Arithmetic is done in three cases. When a new se-
quence on the current row and pad enters, the dis-
tance between starting times, (a − aj), is calculated.
Because the data type is unsigned, a is kept at the
top of the cluster by assigning it the highest of the
starting times. The roles of the unfinished cluster and
sequence are interchangeable. The distance between
the middle of the incoming and the middle of the first
in the search range is also calculated (calc dist). If
the result is within match distance, merging occurs.

In the merge mult state the last part in (7), is
computed for the lower of the unfinished cluster and

merge
mult

idle

merge
add

merge
store

send
one

insert
seq
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dist

send
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send
many
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Figure 7: The state machine of the Merger. The
undertaken arithmetical operations and write accesses
are marked.

the incoming sequence. The rest of the calculations
are done unconditionally. They are finished in the
merge add state. After merging the resulting cluster
is inserted into the current list (merge store), at the
same time the old unfinished cluster is removed from
the search range by incrementing the begin pointer.

If a match is not found in the calc dist state the
ordering of data is crucial: The first cluster in the
search range is always the one of highest time value,
so if it is below the incoming, the rest of the clusters
in the search range will also be below. Hence there
can be no matches for the incoming sequence and it
can be inserted into the current list (insert seq). In
the opposite case, if the cluster in the search range is
higher than the incoming, all subsequent incoming se-
quences will be below or on other pads, so the cluster
in search range must be finished. The cluster is out-
put, and the begin pointer is incremented (send one).
The same procedure happens in three other states.
By definition, on a change of row there will be no
more matches neither in the search range nor the cur-
rent list. Therefore all the clusters are sent (send all).
As described above, motivating the ring buffer: when
there is a change of the pad, clusters in the search
range are sent and the lists are renamed (send many).
The last case finishing a cluster occurs if convolution is
turned on and a local minima in a cluster is detected.
The split cluster state is combination of send one and
insert seq. The old cluster is sent to the output and
the incoming is inserted into the search range.

4.3. SmartMult

Both the Decoder and the Merger do multiplica-
tions where the range of one of the multiplicands is
limited to the size of the cluster as intended by (6)
and (7). To save resources (logic cells) on the FPGA
and increase the clock speed, we replace the standard
multipliers by SmartMult, which takes the two mul-
tiplicands as arguments and uses left shifts and one
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Figure 8: A part of a time-pad plane. Colored patches
are input charges, squares mark the geometric middle of
the sequences, points and circles mark the centroids
found by the FPGA and the C code resp.

Table I Distribution of clock cycles spent in the various
states of the Merger, corresponding to dN/dy of 2500 and
1000 and with/without deconvolution

state 2500-n 2500-de 1000-n 1000-de

idle 26,0 25,2 31,0 30,0
merge mult 6,5 11,2 9,1 9,0
merge add 6,5 11,2 9,1 9,0
merge store 6,5 11,2 9,1 9,0

send all 0,5 0,4 0,5 0,5
send many 5,4 4,2 5,6 5,6
send one 9,3 5,4 5,6 5,7
calc dist 26,9 23,7 22,9 21,4
insert seq 12,6 7,3 8,2 8,5

split cluster 0,0 0,3 0,0 0,2

adder for the calculations. One argument, the short
multiplicand, is limited to reduce the number of shifts
needed. The limit for the short multiplicand deter-
mines the highest sequence that is allowed and the
highest number of merges possible. Clusters larger
than this are flagged as overflowed and ignored when
finished.

4.4. Verification

For verification purposes the system is stimulated
by a testbench. The testbench reads an ASCII file
containing simulated ALIROOT raw data in an AL-
TRO like back-linked list, which is sent to the Decoder.
Operation of the circuit is then studied in a simulator
for digital circuits. Found clusters of the Merger cir-
cuit are directed back to the testbench which writes
the results to a file. That file is then compared to a
result file made by a C++ program running nearly

the HLT C++ algorithm on the same simulated in-
put data. Since the number of clusters is in the or-
der of thousands and to eliminate human error, an-
other C++ program compares the two result files.
The found clusters agree as is graphically shown in
figure 8.

4.5. Timing

The circuit has been synthesized and currently uses
1937 logic cells. That is 12% of the available resources
on the APEX20KE-400-2x, which we are using for
prototyping. The clock speed is 35 MHz. For the
different input data sets taken for the verification, the
Merger has been in the idle state more than 25% of
the time. For two different data sets the distribution
of the clock cycles is shown in table I for dN/dy of
2500 and 1000 and with/without deconvolution. As
merging is the time critical part of the circuit, there
is a safety margin for higher multiplicity data.

5. Conclusion

The fast cluster finder algorithm has been adapted
for a hardware implementation. The synthesized cir-
cuit currently uses 12% (1937) of the logic cells on the
APEX20KE-400-2x FPGA with a clock speed of 35
MHz. The time critical Merger circuit is idle more
than 25% of the time, which implies a safety margin
for higher multiplicity input data.
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