

Online Monitoring software framework in the ATLAS experiment
M.Barczyk, D.Burckhart-Chromek1, M.Caprini2, J.Da Silva Conceicao, M.Dobson, J.Flammer, R.Jones,
A.Kazarov3, S.Kolos3,4, D.Liko, L.Lucio, L.Mapelli, I.Soloviev3
CERN, Geneva, Switzerland

R.Hart
NIKHEF, Amsterdam, Nederland

A.Amorim, D.Klose, J.Lima, L.Pedro
FCUL, Lisbon, Portugal

H.Wolters
UCP, Figueira da Foz, Portugal
E.Badescu
NIPNE, Bucharest, Romania

I.Alexandrov, V.Kotov, M.Mineev
JINR, Dubna, Russia

Yu.Ryabov
PNPI, Gatchina, St. Petersburg, Russia
1presenter at the conference
2on leave from NIPNE, Bucharest, Romania
3on leave from PNPI, St. Petersburg, Russia
4paper editor

A fast, efficient and comprehensive monitoring system is a vital part of any HEP experiment. This paper describes the software
framework that will be used during ATLAS data taking to monitor the state of the data acquisition and the quality of physics data in the
experiment. The framework has been implemented by the Online Software group of the ATLAS Trigger&Data Acquisition (TDAQ)
project and has already been used for several years in the ATLAS test beams at CERN. The inter-process communication in the
framework is implemented via CORBA, which provides portability between different operating systems and programming languages.
This paper will describe the design and the most important aspects of the online monitoring framework implementation. It will also
show some test results, which indicate the performance and scalability of the current implementation.

1. INTRODUCTION

ATLAS [1] is one of the four experiments in the Large
Hadron Collider (LHC) [2] accelerator at CERN. The
ATLAS detector consists of several sub-detectors, which in
turn are subdivided into a number of partitions, which can be
operated in parallel and fully independently one from
another.

The data rate from the whole detector after Level 1
Trigger rejection is about 150 Gbyte per second. These data
are spread amongst 1600 read-out links, with each of them
running at a possible maximum rate of 160 Mbyte per
second. The ATLAS Trigger and Data Acquisition (TDAQ)
[3] system consists of the High Level Trigger (HLT), which
performs event selection reducing data by a factor of 300,
and the Data Acquisition system (DAQ), which transports
event data from the detector readout to the HLT system and
selected events to mass storage.

In order to provide the required functionality and to
handle the physics data rate, the TDAQ system will use
several thousand processors connected altogether over a
high-speed network with each of them running several
TDAQ software applications. Monitoring of such a large and
complicated system is a vital task during the data taking
periods as well as during the commissioning of the detector.

2. THE ONLINE SOFTWARE

The Online Software [4] is a sub-system of the TDAQ,
which encompasses the software to configure, control and
monitor the TDAQ and detectors. It is a customizable
framework, which provides essentially the ‘glue’ that holds
the various sub-systems together. It does not contain any
elements that are detector specific as it is used by all the
various configurations of the TDAQ and detector
instrumentation.
The Online Software consists of three main parts responsible
for a clearly defined functional aspect of the whole system:

• Control framework - supports TDAQ system
initialization and shutdown, provides control
command distribution and synchronization, error
handling and system verification.

• Databases framework – responsible for configuration
of the TDAQ system and detectors.

• Monitoring framework - provides software for the
TDAQ system and detector monitoring.

3. MONITORING FRAMEWORK

There are many essential parameters in the TDAQ system,
which must be continuously monitored during data taking:
physics data quality and integrity, consistency of the trigger
information, correlation between sub-detectors, status of the

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THGT003 ePrint hep-ex/0305096

hardware and software system elements, etc. This
information can be taken from different places in the data
flow chain between detectors and the mass storage.

Another important aspect of the monitoring is error
reporting. Any malfunctioning part of the experiment must
be identified and signaled as soon as possible so that it can
be cured.

3.1. Monitoring framework model

In the large highly distributed system it must be possible
to transport the monitoring information from the places
where it is produced to the places where it can be processed.
The Monitoring framework, provided by the Online
Software, performs this task as it is shown in Figure 1. In
this figure the application which produce the monitoring
information are called the Monitoring Providers, and the
Monitoring Consumers are the applications, which can
process this information.

Monitoring
Framework

Monitoring
Provider

command

data

Monitoring
Consumer

command

data

Figure 1: Monitoring framework model.

In addition to the transportation of the monitoring data,
the Monitoring framework provides a possibility to transport
the monitoring data requests (commands) from the
Consumers to Providers.

3.2. Monitoring data types

There are different types of information, which can be
used to understand the state and correct functioning of the
TDAQ system and detector. This can be events or event
fragments sampled from well-defined points in the data flow
chain, various status and statistics information, which reflect
the operation of the hardware elements and software
processes in the system, and errors which can be detected at
different levels of the system. These types are significantly
different in terms of data size, update frequency, type of
access, number of Providers and Consumers, etc.

Table 1: Monitoring data types
Type Format Production Access

Samples of
physics
events

Vector of
4-byte
integers

On request On request

Errors ID +
Severity +
Text

In case of faults Via subscription

Histograms Standard
histogram
formats

Periodically or
whenever it is
changed

On request and
via subscription

Other
information

User-
defined

Periodically or
whenever it is
changed

On request and
via subscription

Table 1 shows the main monitoring data types along with
their most important characteristics.

3.3. Monitoring Architecture

In order to optimize the performance of the monitoring in
a large and highly distributed TDAQ system a separate
service for each major class of the monitoring information is
provided. Each service offers the most appropriate and
efficient functionality for given information type and
provides specific interfaces for both Monitoring Providers
and Consumers. Figure 2 shows the architecture of the
Monitoring framework.

 Histogramming
Service

Information
Service

Event
Monitoring

Service

Message
Reporting
Service

Inter Process Communication (IPC)

CORBA broker

Figure 2: Monitoring framework architecture

The Inter Process Communication (IPC) [5] is a basic
communication service, which is common for all the Online
Software services. It defines a high-level API for the
distributed object implementation and for remote object
location. The IPC provides a common basic set of remote
methods for all the remote objects in the Online Software. In
addition the IPC implements partitioning, which allows to
run several instances of the Online Software services in
different detector partitions concurrently and fully
independently.

The IPC itself is built on top of the Common Object
Request Broker Architecture (CORBA) [6] broker, which
provides the actual inter-object communication. CORBA is a
vendor-independent industry standard defined by the Object
Management Group (OMG) [7] for an architecture and
infrastructure that computer applications use to work
together over networks. The most important features of
CORBA are: object oriented communication, inter-
operability between different programming languages and
different operating systems, object location transparency.

3.4. Monitoring Services

3.4.1. Event Monitoring Service
The Event Monitoring Service (EMS) is responsible for

transportation of physics events or event fragments sampled
from well-defined points in the data flow chain to the
software applications, which can analyze them in order to
monitor the state of the data acquisition and the quality of
physics data of the experiment. An event is transported as a
sequence of bytes, so the EMS is neutral to the event format.
Figure 3 shows the main interfaces provided by the EMS.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THGT003 ePrint hep-ex/0305096

Event

Monitoring
Service

Event
Provider

Event
Sampler

Event
Consumer Event

Accumulator

Event
Distributor

Event
Iterator

start_sampling

stop_sampling

add_event

select

next_event

Figure 3: Event Monitoring Service interfaces

The Event Provider which is able to sample events from a

certain point of the data flow has to implement the Event
Sampler interface. When the Event Consumer requests
samples of events from that point via the select method of
the Event Distributor interface, the EMS system asks this
Event Provider to start a sampling process by sending it the
start_sampling message via the Event Sampler interface.
The Event Provider samples events and provides them to the
EMS via the Event Accumulator interface. The Event
Consumer can get these events via the Event Iterator
interface.

When there are no more Event Consumers interested in
event samples from a particular point of the data flow chain,
the EMS sends the stop_sampling message to the
appropriate Event Provider via the Event Sampler interface
to stop the sampling process.

The monitoring framework provides also a graphical user
interface application, which is an example of the Event
Consumer. The application is written in Java and is called
Event Dump. It uses the Event Distributor and the Event
Iterator interfaces to get an event from the place specified
by the user and displays the event content.

Figure 4: Event Du mp application

Figure 4 shows the main window of the Event Dump (the
bigger one), which displays the event data, and the selection
window (the smaller one) in which the user can define the
detector, crate, and module from which the event is to be
taken and also can specify some keyword values, which will
be used to select the interesting events.

3.4.2. Message Reporting Service
The Message Reporting Service (MRS) transports the

error messages from the software applications, which detect
the errors to the applications, which are responsible for the

error handling. The MRSStream interface can be used by any
application, which wants to report an error as it is shown in
Figure 5. In order to receive the error messages an Error
Consumer has to subscribe via the MRSReceiver interface
for the messages it wants to receive. The MRS will forward
the appropriate messages to the interested subscribers via the
MRSCallback interface.

Message
Reporting

Service
Error

Provider
Error

Consumer
MRSStream

MRSReceiver

MRSCallback

send_error
subscribe

notify

Figure 5: Message Reporting Service interfaces

An example of the Error Consumer is shown in Figure 6.
This is the main user control interface application of the
TDAQ system, which contains the message display at the
bottom.

Figure 6: Main TDAQ user interface

This message display shows the error messages coming from
the TDAQ applications and detectors. A user can specify the
appropriate parameters for the subscribe method of the
MRSReceiver interface via the MRS panel in the right part of
the user control window to define the messages to be shown.

3.4.3. Information Service
The Information Service (IS) allows TDAQ applications

to exchange user-defined information during a run. A user
can define the structure of his specific information in XML.
Then, he can produce C++ or Java classes using the
generator application provided by the IS. The instances of
these classes can be shared by the applications. The
information structure description is also available at run
time.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THGT003 ePrint hep-ex/0305096

Figure 7 shows the main interfaces provided by the IS.
Any Information Provider can make his own information
publicly available by using the insert method of the
InfoDictionary interface and notify the IS about changes of
the published information via the update method. The
remove method of the InfoDictionary interface can be used
to delete the information from the IS.

Information
Service

Info
Provider

Info
Consumer

InfoDictionary

InfoReceiver

InfoCallback
insert
update
remove

subscribe

notify

get_value

F
igure 7: Information Service interfaces

The IS supports two types of information access. It is
possible to get the information value directly on request via
the get_value method of the InfoDictionary interface. On the
other hand, any Information Consumer can subscribe for a
particular information or set of information via the
InfoReceiver interface, in which case it will be informed
about changes of the information for which it subscribed.

There is a graphical user interface which allows to browse
the content of the IS. Figure 8 shows the main window of
this application (smaller one), which displays all the
instances of the IS for a specific detector partition. The
partition can be chosen from the list of active partitions in
the drop down control at the top-right corner of this window.

Figure 8: IS Monitor application

Another window in Figure 8 (bigger one) shows the list of
information items available at the selected instance of the
Information Service. For any item in this list one can see the
current value of the information as well as the description of
the information item. The content of this window is
synchronized with the selected IS instance and is updated
automatically whenever the information is changed in the IS.

3.4.4. Histogramming Service
The Histogramming Service (HS) allows applications to

exchange histograms. From the implementation point of
view it is a specialization of the Information Service. The
HS defines several information types which are used to
transport histograms via the IS.

The HS has an extendable API in terms of the formats of
the histograms, which may be used. The HS defines two
abstract interfaces: HistoProvider and HistoReceiver. In
order to support a particular histogram format one has to
provide an appropriate implementation of those interfaces.

Histogram
Provider

Histogram
Consumer

RootHistoReceiver

Histogramming
Service

RawHistoReceiver

HistoReceiver

RootHistoProvider

RawHistoProvider

HistoProvider IS

Figure 9: Histogramming Service interfaces

Currently the HS supports two types of histograms as it is
shown in Figure 9:

• ROOT histograms – histograms in the format
proposed by the ROOT framework [9].

• Raw histograms - histograms represented by arrays of
a fundamental data type, i.e. integer, float, double,
etc.

Figure 10 shows the Histogram Display application
implemented on top of the ROOT Object Browser. This
application is an example of the Histogram Consumer,
which uses the RootHistoReceiver interface to get
histograms from the HS.

Figure 10: Histogram display

In the left part of the main window (at the background) one
can see a list of histogram providers for each detector
partition. The right panel shows the list of available
histograms for selected provider. Each histogram can be
viewed in a separate window, which is an instance of the

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THGT003 ePrint hep-ex/0305096

standard ROOT histogram viewer. This viewer gives access
to the complete histogram viewing functionality provided by
ROOT.

4. PROTOTYPE IMPLEMENTATION

Prototype implementations exist for all the Monitoring
services. These prototypes are aiming to verify the feasibility
of the chosen design and the choice of implementation
technology for the final TDAQ system, and are used in the
ATLAS test beam operations.

Each service is implemented as a separate software
package with both C++ and Java interfaces. All the services
are partitionable in the sense that it is possible to have
several instances of each service running concurrently and
fully independently in different detector partitions.

As it has been mentioned already the services
implementation is based on the CORBA. Currently the open
source implementation of CORBA provided by Xerox
Company is used. It is called Inter Language Unification
(ILU) [9]. Several other CORBA implementations are
currently being evaluated. They are namely: TAO [10],
MICO [11], omniORB [12] and ORBacus [13]. They
provide interesting features, which are missing in ILU, i.e.
advanced thread management in multy-threaded
applications, advanced connection management, CORBA
objects persistence, etc. Another CORBA broker can replace
ILU without affecting the implementation of the Monitoring
services.

4.1. Performance and scalability of the
current implementation

Among the Monitoring services, the most extensive tests
have been performed for the Information Service. The other
services are implemented on the same technology and offer
the same level of performance and scalability as the IS.

The test bed for the IS tests consisted of 216 dual-Pentium
PCs with processor frequency from 600 to 1000 MHz. A
single instance of the IS was set up on one dedicated
machine. The other 200 machines were used to run from one
to five Information Providers on each of them
simultaneously. Each Information Provider published one
information object in the IS at start up and then updated it
once per second. The last 15 machines were used to run 1, 5,
10 or 15 Information Consumers which subscribe for all the
information in the IS. Whenever an Information Provider
updated his information, this new information was
distributed to all the Information Consumers.

Figure 11 shows the average time for transporting
information from one Information Provider to all the
subscribed Information Consumers as a function of the
number of Information Providers working concurrently.

200 400 600 800 1000
0
1
2
3
4
5
6
7
8

1 Consumer
5 Consumers
10 Consumers
15 Consumers

Number of Information Providers

tim
e

(m
s)

Figure 11: IS test results

The results of the tests show that a single instance of the

Information Service is able to handle one thousand
Information Providers and about 15 Information Consumers
at the same time. In larger configurations the design of the
IS allows to distribute the total load among a number of the
IS instances, which can run fully independently. Thus, it will
be necessary to run only a few (less then 10) IS instances in
order to provide the required performance for the final
ATLAS TDAQ.

5. SUMMARY

Monitoring in the ATLAS experiment is a complex and
demanding task. The Online Software of the ATLAS TDAQ
system implements a software framework, which can be
used for information exchange between the monitoring data
providers and consumers. The monitoring framework
consists of four services, implemented on top of CORBA.
Each service provides the most appropriate and efficient
solution for a specific type of the monitoring information.
Prototype implementations exist for all the monitoring
services and have been successfully used for several years in
the ATLAS test beams [4]. The tests, which have been
recently performed, show that the services satisfy the
requirements of the ATLAS experiment.

References

[1] ATLAS Technical Proposal, CERN/LHCC/94-43 ISBN
92-9083-067-0.

[2] Status of the LHC / R.Schmidt, CERN-LHC-Project-
Report-569, 02 Jul 2002.

[3] ATLAS High-Level Triggers, DAQ and DCS: Technical
Proposal - ATLAS Collaboration. CERN-LHCC-
2000-017.

[4] Online Software for the ATLAS Test Beam Data
Acquisition System, 2003 IEEE Real Time
Conference

[5] Use of CORBA in the ATLAS prototype DAQ,
A.Amorim et al., IEEE transactions on Nuclear
Science, Vol. 45, No. 4, August 1998

[6] CORBA home page, http://www.omg.org/corba/
[7] OMG home page, http://www.omg.org/
[8] ROOT home page, http://root.cern.org/

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THGT003 ePrint hep-ex/0305096

[9] ILU home page, ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
[10] TAO home page,

http://www.cs.wustl.edu/~schmidt/TAO.html
[11] MICO home page, http://www.mico.org/
[12] omniORB home page, http://omniorb.sourceforge.net/

[13] ORBacus home page,
http://www.iona.com/products/orbacus_home.htm

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6THGT003 ePrint hep-ex/0305096

