
EU DataGRID testbed management and support at CERN
E. Leonardi and M.W. Schulz
CERN, Geneva, Switzerland

In this paper we report on the first two years of running the CERN testbed site for the EU DataGRID project.
The site consists of about 120 dual-processor PCs distributed over several testbeds used for different purposes:
software development, system integration, and application tests. Activities at the site included test productions
of MonteCarlo data for LHC experiments, tutorials and demonstrations of GRID technologies, and support
for individual users analysis. This paper focuses on node installation and configuration techniques, service
management, user support in a gridified environment, and includes considerations on scalability and security
issues and comparisons with ”traditional” production systems, as seen from the administrator point of view.

1. Introduction

The EU DataGRID (EDG) project [1] started in
January 2001 and is now entering its third and last
year of activity. The goal of the project is the de-
velopment of a consistent set of services to create a
distributed computing grid, as defined in [2].To test
the system under development, a distributed testbed
was created involving at first the five main partners
of the project (CERN, INFN, IN2P3, PPARC, and
NIKHEF). This testbed was then extended to more
and more sites, to a total which now exceeds 20 cen-
ters all over Europe.

Since the beginning of the project, CERN has been
in a very central position, from development to final
deployment of the software on the main testbed. In
this paper we will describe our experience as managers
of the CERN testbed site.

2. Description of EDG services

The current (as of March 2003) release of the EDG
middle-ware includes a set of services which imple-
ment, even if in a non-definitive way, all the basic
services needed to create a grid. In this section we
will give an overview of these services.

2.1. Authentication

User and node authentication complies with the
Grid Security Infrastructure (GSI), as defined in [4],
and is based on the openSSL implementation of the
Public Key Infrastructure (PKI).

2.2. Authorization

Access to resources is authorized through a simple
map file which associates each authorized user certifi-
cate with a dynamically assigned local account.

The list of authorized certificates is available from
a small number of LDAP servers, each managed by

a different Virtual Organization (VO). As a conse-
quence, the current authorization structure is very
coarse grained and can only distinguish either between
two individual users or between users belonging to dif-
ferent VO’s.

2.3. Resource Access

Physical access to local resources, i.e. submission
of jobs to a local batch system or transfer of a file
to/from a local storage server, uses the gatekeeper ser-
vice provided by the GLOBUS [3] project with the
addition of EDG specific extensions, and the GSI-
enabled GridFTP server, also from GLOBUS.

2.4. Storage Management

Storage management is still at a quite early stage
of development and includes a file replication service
(GDMP [5]), which at CERN is interfaced to CAS-
TOR, the local MSS service [6], and an LDAP-based
Replica Catalog, which will be described later in some
detail.

2.5. Information Services

Information about available resources is distributed
via a hierarchical Grid Information Service (GIS), also
using LDAP as the base protocol.

2.6. Resource Management

This is the intelligence of the grid: a Resource Bro-
ker (RB) scans job requirements, chooses the best
matching site using information from the GIS and de-
livers the job to the corresponding gatekeeper.

To accomplish this task, the top RB server uses
several subordinate services: Job Submission Server
(JSS) Job Parsing Server (JPS), CondorG [7], ...

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THCT007 ePrint cs.DC/0305059



2.7. Logging and Bookkeeping

The Logging and Bookkeeping (LB) service stores a
state-transition based history of each job handled by
the grid.

2.8. Monitoring and Accounting

Monitoring of the correct functioning of each EDG
service and of the grid as a whole is foreseen for the
final version of the EDG software but no integrated
monitoring system was available at the time of the
report. The same applies for a detailed accounting of
resource utilization.

Ad hoc solutions for both services were in operation
and varied from site to site.

2.9. Node Installation

One of the goals of the EDG project is to provide
automatic tools to manage large computing centers
in the LHC era. Most testbed sites used an auto-
matic node installation and management tool, the Lo-
cal Configuration System (LCFG [8]), which will be
described later in this paper.

3. EDG testbeds at CERN

Due to its central position within the project,
CERN hosts several parallel testbeds, used for dif-
ferent tasks.

3.1. Application testbed

On this testbed the latest “stable” version of the
EDG middle-ware is installed. This testbed is open
for all users participating to the project and is used
for several different tasks:

• programmed “stress tests” to evaluate the be-
havior of the middle-ware on a medium scale
distributed testbed;

• data production tests by all application groups,
including all LHC experiments, bio-medical ap-
plications, and earth observation projects;

• demonstrations and tutorials of EDG middle-
ware functionalities. Incidentally we can note
that these activities, targeted at increasing the
public visibility of the project, often posed prob-
lems to the site managers: given the current ma-
turity level of the software, to avoid putting the
demonstration at risk a constant surveillance of
the testbed was required for the whole duration

of the same and no other activities (test, nor-
mal usage) could take place. Recently an in-
dependent testbed, specific for demonstrations,
has been set up.

The number of sites participating to this testbed
grew from the original 5 sites to the current 20 and
is constantly growing. CERN hosted most of the cen-
tral services (the top node of the information system,
Replica Catalogs for two VO’s, two of the main RB’s,
...) and connected to the middle-ware a PBS-based
batch system with a number of Worker Nodes which
went up to over 100 in periods of intense activity.

As only software versions which passed a prelimi-
nary extensive test were installed here, this testbed
underwent a relatively small number of software up-
dates, mostly required for security patches, installa-
tion of new applications on behalf of the experimental
groups, and modifications to the access permissions.
On the other hand, being aimed at production tests,
this testbed required a fairly large amount of man-
power due to the instability of the software: most of
the main services needed a complete restart at least
once per day and, at the same time, a lack of manage-
ment tools and experience made troubleshooting very
hard.

3.2. Development testbed

On this testbed all EDG software versions are in-
tegrated and tested. In order to keep response and
update time as short as possible, only the five main
sites participate to this testbed.

Aimed at functionality testing, the number of nodes
in this testbed was fairly small compared to the ap-
plication testbed. At CERN only up to 10 nodes were
used for the development testbed.

Update activity on this testbed was continuous, of-
ten requiring installation of several versions in a single
day. To facilitate troubleshooting, developers had di-
rect access to most service nodes. On several occasions
this induced some traceability problems as it was not
always easy to get a complete description of what the
developer did to fix a bug, especially if this included
node configuration changes.

3.3. Integration testbed

Last April, a new testbed was created to perform
the (still ongoing) integration of version 2.0 of the
EDG middle-ware.

This testbed is composed of about 20 nodes and
has characteristics very similar to the development
testbed: continuous deployment of test versions, free
access to developers, frequent re-installation of the
nodes.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THCT007 ePrint cs.DC/0305059



On this testbed, the EDG middle-ware was first
ported to the RedHat 7.3 version of Linux and to the
2.2.4 version of the GLOBUS toolkit, in its VDT 1.1.8
[9] manifestation.

Since the integration phase for EDG 2 started,
most of the EDG manpower and hardware resources
at CERN were diverted to this testbed so that, at
the time of writing, the CERN development testbed
has been completely dismantled and the application
testbed has been reduced to just a Storage Element
(SE) node providing access to the CASTOR MSS.

3.4. Developers’ testbeds

Before a new version of one of the services is allowed
to be merged with the rest of the middle-ware on the
development or integration testbed, it must be tested
for basic functionality in standalone mode. To this
end we set up several “reduced” testbeds, including
only software components needed to test one of the
services at a time.

Each of these testbeds consisted of only two or three
nodes but there were continuous requests for the cre-
ation of topologies centered on any one of the services.

3.5. Testbed infrastructure

To support all these testbeds, CERN provided an
infrastructure based on some standard CERN com-
puter center services with the addition of a few EDG
specific services:

• 5 data servers, with a total of 2.5 TB of mirrored
disk storage, offered NFS-based storage capa-
bilities for EDG users’ home directories, shared
areas for the batch system (the gass cache area
described later) and generic storage for data pro-
duction tests;

• one of the EDG SE’s was interfaced to the CAS-
TOR MSS;

• as many of the EDG developers and users could
not be provided with a CERN AFS account, we
set up a NIS service for all EDG users;

• a Certification Authority (CA) [10] was set up
specifically for EDG usage and provided per-
sonal and host certificates for CERN users. This
CA is now evolving toward a CERN-wide ser-
vice.

• an LCFG server, including a private DHCP
server, was setup to support node installation
and configuration.

The whole testbed infrastructure was then intercon-
nected to the standard CERN LAN with 100 Mbps or,
in the case of data servers, 1 Gbps Ethernet lines.

4. EDG releases

Before March 2002, no real software release proce-
dure was in place. This led to several problems mostly
related to the tracing of hand-made modifications on
the configuration of the nodes and the installation of
private executables by the developers. In turn, this
resulted in misalignment among the five participating
sites and in huge difficulties in collecting a set of soft-
ware packages and configuration settings to create a
consistent version of the EDG middle-ware.

In spite of the difficulties and with a lot of hard work
from all the people involved, we were able to converge
to the first real release of the EDG software, version
1.1.2, which was then used in some key demonstra-
tions of functionalities in March 2002.

To improve the situation, a strict release procedure
was defined:

• all new rpms are first delivered to the Integra-
tion Team which takes care of inserting them in
a new CVS-based tentative release tag;

• this tentative tag is first installed on the CERN
development testbed and a predefined set of ba-
sic tests is applied;

• the five core sites install the same tag and a new
set of tests, centered on distributed functionali-
ties, is applied;

• the tag is installed on the application testbed
where scalability tests and generalized use can
begin.

If at any of these stages the tests fail, the tag is
rejected and bug reports are sent back to the relevant
developers.

To improve flexibility, application software only
needed at the final stage of testing to create a realistic
environment is not required to follow this procedure
and can be installed upon request of the main appli-
cation groups. Also, basic OS security patches and
support for new CA’s can be applied at need.

Thanks to this procedure, the release of new ver-
sions of the code proceeded in a much smoother way
and had its finest day last November when all EDG
sites successfully moved from version 1.2.3 to the non-
downward-compatible version 1.3.0 in only one day.

5. Node installation

One of the key issue to implement the release proce-
dure described in the previous section is the possibility
of installing and configuring service nodes located at
geographically remote sites according to a predefined
and continuously changing set of instructions.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THCT007 ePrint cs.DC/0305059



To this end EDG adopted and extended the Local
Configuration System (LCFG) developed at the Uni-
versity of Edinburgh.

This tool uses a human-readable description of the
basic configuration of the Linux OS and sends it in
XML format to an agent on the node for installation.
There a set of scripts, called “objects”, use this de-
scription to actually modify the system configuration
files.

LCFG can easily be extended by providing addi-
tional objects which can configure any new function-
ality or service one may want to add.

After a slow start, more and more objects were cre-
ated to effectively configure all EDG specific services.
Today only very few hand configuration steps are still
needed to create an EDG-enabled site and even these
will be soon completely automated.

Even if LCFG has proved to be the most valuable in-
strument to keep the EDG release procedure in track,
we found a few drawbacks which had to be taken into
account before adopting this tool:

• new objects have to be carefully designed in or-
der not to interfere with other objects;

• some basic limitations of the standard objects
have to be taken into account, e.g. hard disks
can only be partitioned using the four primary
partitions;

• no feedback about the installation or update
process is sent back to the LCFG server: this
required the creation of ad hoc tools to do some
basic checks and a lot of manual work in case of
problems;

• LCFG wants to have total control of the ma-
chine configuration, from basic OS functions to
application level. This means that, in its basic
version, LCFG is not suited to install, for exam-
ple, the EDG middle-ware on top of an already
installed node. Recently a modified version of
LCFG, called LCFGlite[11], was developed to
handle this case;

• due to its structure, LCFG does not cope well
with OS settings which may change outside of
its control. An example are user passwords: if
users change their passwords, LCFG will change
them back to a predefined value. To solve this
problem, we moved all user accounts to a non-
LCFG-managed NIS server and left only system
accounts under local LCFG control;

• as each modification to the node configuration
must be first inserted into the configuration de-
scription file on the main server, using LCFG
to manage nodes used by developers for their
first tests might substantially slow down the fast
rate of changes. Also, if a developer modifies any

configuration file by hand, this might be changed
back by LCFG, thus introducing a lot of entropy
into the process.

To overcome part of these shortcomings, the EDG
WP4 group is currently finalizing an alternative tool
which will replace LCFG.

In parallel with LCFG, we used the network boot
capabilities of recent NIC’s and the syslinux tool [12]
to bootstrap the initial installation procedure of the
nodes directly from the network. It was then sufficient
to start a private DHCP server on the LCFG server
to get the whole node installation and configuration
automatically accomplished.

To improve the situation even further, we imple-
mented a system to remotely reset nodes using a se-
rial line controlled relay system connected to the re-
set switch of the motherboards and we used multi se-
rial line boards to collect all consoles to a few central
servers, thus allowing a completely web-based control
of each node. A report on this project was presented
at this conference in [13].

After all the described tools were in place and after
an initial period of adaptation and tuning, the large
number of rapidly changing nodes needed for the EDG
deployment became much more manageable and our
visits to the CERN computer center decreased to al-
most nil.

6. Middle-ware

The complexity and novelty of the EDG project
made the list of problems encountered in the integra-
tion and testing phases particularly long. Here we
briefly list some of the main issues which emerged in
the process and describe in more detail the problems
which have interesting aspects from the system- and
site-manager point of view.

As noted previously, many of the middle-ware ser-
vices were and still are quite fragile, needing frequent
restarts. In addition to this, the fault patterns tend
to be very complex, often involving several services
at the same time, thus making the troubleshooting
process quite hard and the learning curve very steep.
This state of affairs, normal for an R&D project of this
size, was worsened by the fact that the overall archi-
tectural design of the project concentrated on defining
service functionalities and their interaction but often
neglected to deal with the resource management as-
pects of the problem.

As a consequence, we had many problems in deal-
ing with otherwise normal aspects of storage manage-
ment: adding new disk space was very tricky, as well
as moving file around within the available disk space.
Also, no tools to handle scratch space on either batch
or service nodes were foreseen, and it was very easy to
see a whole disk fill up bringing the node, and often

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THCT007 ePrint cs.DC/0305059



with it the whole grid, to a grinding halt. Log files,
one of the main tools to perform troubleshooting and
system checking, were most of the time hard to inter-
pret, often lacked some fundamental information (the
time tag!), and for a few services did not exist at all.

Another aspect which was not sufficiently taken into
account in the first development of the software was
that of scalability: several services, even if they cor-
rectly implemented all basic functionalities, could not
scale beyond a minimal configuration. Examples of
this could be found in the Resource Broker, which,
due to a known limitation of the CondorG system,
was not able to handle more than 512 jobs at the same
time, and the Replica Catalog, which had problems if
more than O(1000) files (this number depends on the
average length of the file name) were listed as a single
collection. Even the Information Service started mal-
functioning as soon as the number of sites connected
to the grid increased from the initial five.

Parallel to scalability problems, we encountered
problems related to more traditional aspects of dis-
tributed system programming: all along the develop-
ment and integration process, besides the usual mem-
ory leak bugs, we saw port leaks, file leaks, even i-node
leaks. These problems were often related to lower lev-
els of the software and led to non obvious fault pat-
terns which needed a long time to debug.

A problem which haunted us in the early phases
of the project was the lack of control in the packag-
ing process: executables which worked correctly when
compiled by hand by developers, suddenly started
misbehaving when inserted into a standard rpm pack-
age for deployment. This was most of the time due
to differences in libraries on private machines. To re-
duce this risk, an auto-build system was created and
is now in operation: developers are required to set
their packages so that they can be compiled on the
official auto-build node and only packages created by
this system are accepted for release.

Before going into the details of some of the listed
problems, we should note that the experience from the
first phase of the project was very valuable to define
the priorities for the new and final release of the EDG
software, currently in the integration phase, so that
most of the problems and inconsistencies found dur-
ing the deployment of the first version of the software
were addressed and solved, thus improving stability,
scalability, and manageability of the whole system.

6.1. The gass cache area

Due to the internal structure of the GRAM pro-
tocol, defined by the GLOBUS project to handle job
submission and information passing in a grid-enabled
batch system, a disk area, known as the gass cache
area, must be shared between the gatekeeper (the bor-
derline node between the grid and the batch system)

and all the worker nodes of the batch system.
According to the GRAM protocol, each job which is

submitted to the batch system creates a large number
(� 100) of tiny files in the gass cache area. If the job
ends in an unclean way, very often these files are not
erased. In addition, due to a bug in the implemen-
tation, even if the job ends correctly, the gass cache
area is not completely cleaned.

Given the small size of the files, often not exceeding
100 bytes, these two problems create a steady leak of
i-nodes on the shared area so that, even if this area
appears to be almost empty, the GRAM protocol sud-
denly stops working as no more files can be created.
Being at the heart of the job submission system of
the grid, problems with the GRAM protocol manifest
themselves in a whole set of different and apparently
uncorrelated malfunctions of several subsystems: the
first few times it took us a long time to find where the
problem lay.

Even knowing the real source of the problem, fixing
it requires a long time to clean up the huge number
of leftover i-nodes, time during which the local batch
system is not visible from the grid, and the loss of any
job running on the batch system at the time.

As there is no easy way to map the internal struc-
ture of the gass cache area to the jobs which are cur-
rently running on the batch system, and no tool to do
this was provided, either by GLOBUS, or by EDG,
it is not possible to create a clean up daemon which
keeps an eye on the shared area and cleans up files
which are not longer needed.

6.2. Storage management issues

As already noted, the first version of the EDG
middle-ware did not contain a complete and inte-
grated model for grid-wide storage management but
only a set of low level tools and services which could
be used to partially interface storage servers to the
grid.

The principal tools were:

• a GSI-enabled ftp server;

• GDMP [5], a replication-on-demand service

• a basic Replica Catalog (RC), with the cited lim-
itations in the number of files it can manage;

• a set of user level commands to copy files to
and from a data server, to trigger file replication
between data servers, and to register files to the
RC;

• a basic interface to mass storage systems like
CASTOR and HPSS.

A constraint in the way the RC was organized had
unforeseen consequences on the possibility of setting

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THCT007 ePrint cs.DC/0305059



up and organizing a storage system which are worth
examining in some detail.

The RC is a simple database, in its first implemen-
tation based on the OpenLDAP [14] package, which
contains a collection of logical file names (LFN), used
to uniquely identify a given file, and for each of them
one or more physical file names (PFN) which point
to the physical location of each replica of the logical
file. By design, the PFN was obtained from the LFN
by appending it to the path of the grid-enabled area
assigned to the corresponding VO on a given storage
system.

As an example, let’s assume that a simu-
lation job submitted by a physicist belonging
to the Atlas VO produces a file with LFN
prod/feb2003/simu001.fz. If a copy of this file is
stored on a SE at CERN, it will have a PFN like
//lxshare0384.cern.ch/flatfiles/atlas/prod/
feb2003/simu001.fz where:

• lxshare0384.cern.ch is the node name of the
SE

• /flatfiles/atlas is the path to the disk area
assigned to Atlas

This apparently harmless limitation had heavy im-
plications in the usage of storage systems: for the file
replication system to work in a user transparent way
within the whole grid, the disk area on each SE must
either consist of a single big partition, which merges
all physical disk systems available to the node, or all
SE’s must have exactly the same disk partition struc-
ture.

To understand this, assume that at CERN the
prod/feb2003 path corresponds to a mount point of
a 100 GB disk (the standard organization of CERN
disk servers) so that only Atlas can use it. At, e.g.,
RAL the prod/feb2003 path might not exist yet, so
if a user wants to replicate the file there he/she must
first create it. At RAL this path will end up on a
partition which depends on the disk layout of the lo-
cal SE and which may very well not have enough disk
space to hold the replicated file, even if the SE itself
has plenty of free disk space on other partitions.

This problem was particularly annoying at CERN
when we tried to set up a central SE where the CMS
collaboration could collect all simulated data pro-
duced on the grid during its “stress test”. To allow
for automatic replication from the other sites, we had
to carefully plan the partition layout on the central
SE, taking into account how much data would be pro-
duced on average at each site participating to the test,
and then ask the CMS production group to store their
data using different paths according to which site the
data were being produced at. The final system worked
fine but it was very far from the expected transparent
replication of data within the grid.

6.3. Resource Broker issues

As explained above, the Resource Broker (RB) is
the central intelligence of the grid, taking care of inter-
preting user requests expressed in the Job Description
Language (JDL) and mapping them to the available
resources using the Grid Information Service.

Due to its central role, the RB interacts with most of
the grid services in many different and complex ways.
A malfunction in the RB is then very visible from the
user point of view as jobs are no longer accepted and
it can have bad effects on all services with which it
interacts. A lot of effort was put into fixing problems
but it is still the most sensitive spot in the grid.

To improve reliability in job submission, several
RB’s have been set up at different sites, thus increas-
ing the scalability of the grid in terms of the maximum
number of jobs accepted and giving users some back-
up access points to the grid in case the local RB gets
stuck with a problem.

Due to the large number of low-level services it uses,
several problems can show up in the RB, thus affecting
the functioning of the whole grid. One of these is
the corruption of the job requests database. This is
related to a non-thread-safe low level library used by
the postgres database which, on dual-processor nodes,
can lead to data corruption.

When this problem occurs, all RB daemons appear
to run correctly but newly submitted jobs end up
in a waiting status. All the daemons must then be
stopped, the whole postgres database cleaned up, and
then the RB can be restarted. In the process, all ac-
tive jobs being controlled by the RB are lost. During
normal usage of the system, this problem occurs on
average once per day per RB node.

It must be noted that a solution to this problem is
already available and will be deployed with version 2
of the EDG middle-ware.

7. Conclusions

EDG testbeds have been in operation for almost two
years, always providing continuous and indispensable
feed-back to EDG developers. LHC experiments and
the other project partners were able to get a first taste
of a realistic grid environment in preparation for fu-
ture large scale deployments.

Being one of the most advanced grid projects cur-
rently in operation, most of the problems and inade-
quacies of the EDG middle-ware were hard to isolate
and to fix, mostly due to lack of previous experience.

Several new problems related to resource manage-
ment in a gridified environment were isolated and are
being or will be addressed in the final version of the
EDG software and related projects like LCG [15].

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6THCT007 ePrint cs.DC/0305059



Acknowledgments

The authors wish to thank the EU and the national
funding agencies for their support of this work.

References

[1] http://eu-datagrid.web.cern.ch
[2] I. Foster and C. Kesselman (editors), “The Grid:

Blueprint for a New Computing Infrastructure”,
Morgan Kaufmann, 1999.

[3] http://www.globus.org
[4] http://www.globus.org/security
[5] http://project-gdmp.web.cern.ch

[6] http://wwwpdp.web.cern.ch/wwwpdp/castor
[7] http://www.cs.wisc.edu/condor/condorg
[8] http://www.lcfg.org
[9] http://www.lsc-group.phys.uwm.edu/vdt

[10] http://globus.home.cern.ch/globus/ca
[11] http://datagrid.in2p3.fr/distribution/

datagrid/wp4/edg-lcfg/documentation/
lcfgng-lite.html

[12] http://syslinux.zytor.com
[13] A. Horvat, E. Leonardi, M.W. Schulz, “A Secure

Infrastructure For System Console and Reset Ac-
cess”, THDT007, CHEP03 Conference, 2003.

[14] http://www.openldap.org
[15] http://lcg.web.cern.ch

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7THCT007 ePrint cs.DC/0305059


