

DIAMOnDS- Distributed Agents for MObile and Dynamic Services
M Aamir Shafi, Maria Riaz, Saad Kiani, Anjum Shehzad, Umer Farooq, Arshad Ali
National University of Sciences and Technology, Rawalpindi 46000, Pakistan

Iosif C Legrand, Harvey B Newman
California Institute of Technology, Pasadena, CA 91125, USA

Distributed Services Architecture with support for mobile agents between services, offers significantly improved communication and
computational flexibility. The uses of agents allow execution of complex operations that involve large amounts of data to be processed
effectively using distributed resources. The prototype system Distributed Agents for Mobile and Dynamic Services (DIAMOnDS),
allows a service to send agents on its behalf, to other services, to perform data manipulation and processing. Agents have been
implemented as mobile services that are discovered using the Jini Lookup mechanism and used by other services for task management
and communication. Agents provide proxies for interaction with other services as well as specific GUI to monitor and control the agent
activity. Thus agents acting on behalf of one service cooperate with other services to carry out a job, providing inter-operation of loosely
coupled services in a semi-autonomous way. Remote file system access functionality has been incorporated by the agent framework and
allows services to dynamically share and browse the file system resources of hosts, running the services. Generic database access
functionality has been implemented in the mobile agent framework that allows performing complex data mining and processing
operations efficiently in distributed system. A basic data searching agent is also implemented that performs a query based search in a file
system. The testing of the framework was carried out on WAN by moving Connectivity Test agents between AgentStations in CERN,
Switzerland and NUST, Pakistan.

1. INTRODUCTION

Distributed Services Architecture (DSA), conceptualized
from [1], having support for mobile agents between services,
offer significantly improved communication and
computational flexibility. The support for mobile agents
allows several potential advantages like asynchronous
communication and disconnected operation, remote
interaction and adaptability, parallel execution and
autonomous mobility among loosely coupled services in the
distributed environment. This prototype system is based on
the above mentioned architecture and it provides a secure
and flexible framework which can be used for
communication and coupling of distributed services used in
High Energy Physics (HEP) [1].

The prototype design consists of AgentStations, which
provide the runtime environment for agents and dynamically
establish a peer-to-peer relation among them using a
discovery and registration service. The AgentStation is made
available as a global network service using the Jini
technology which can be enhanced with other protocols
including JXTA. [3] or UDDI/WSDL [4] because of the use
of generic interfaces. The mobile agent acting on behalf of
its user can move to different AgentStations to
autonomously perform its task. Mobile agents may provide
their downloadable GUI’s [5] to clients in their dynamically
downloadable proxies, to control and monitor their activities.
Basic security has been implemented to establish trust
among AgentStations and to avoid the mobile agents doing
any harm to the AgentStation or vice versa. The system
design avoids single point of failure, uses the network
bandwidth efficiently by using mobile agents and aims to
offer reliable and secure support for large scale distributed
applications in real environment.

 The prototype is an extensible one, which means that a
developer can extend the generic agent to make a
customized agent (mobile service) and make it part of

DIAMOnDS network. Three data access agents have been
implemented to validate and make use of the prototype.
These agents can move to remote AgentStations and provide
its user access to the file system or databases provided by the
remote agent station. The agents ’ downloadable GUI can be
used by the end user for accessing data on remote sites.

1.1. Concept

Distributed Services Architecture (DSA) [1] allows
distributed software components residing on the network to
be published, discovered and invoked by each other. It also
allows a software programmer to model programming
problems in terms of distributed services offered by
components to anyone, anywhere over the network.

From the official Jini architecture specification [2], Jini is
defined as: “A distributed system based on the idea of
federating groups of users and the resources required by
those users. The focus of the system is to make the network a
more dynamic entity that better reflects the dynamic nature
of the workgroup by enabling the ability to add and remove
services flexibly.”

Jini services form communities, thus allowing them to
register, discover and invoke one another. Jini services
submit proxies to the Jini Registration Service called
Lookup Service (LUS) which are downloaded to the client
side on request and are responsible for handling all
communication between the client and the service. The
concept of leasing ensures that all the services have updated
information about all other services, thus addressing the
issue of reliability by providing fault tolerance. The support
for code mobility is a unique feature of Jini over other
Service Oriented Architecture implementations which has
been crafted to build a mobile agents platform in this project.

Mobile agents help to make robust applications that are
able to overcome network latency and reduce network
bandwidth by sending an agent to remote location where it

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THAT003 ePrint cs.DC/0305062

can execute locally, act autonomously and adapt
dynamically to heterogeneous environments [6].

This paper highlights the main features of a new mobile
agents’ framework for dynamic services based on Jini [2].
Section 2 discusses how code mobility is achieved in
DIAMOnDS. Section 3 explains the system architecture and
the four main modules developed in the prototype system.
Section 4 discusses the security mechanism implemented.
Section 5 and 6 describe the specific agents built using the
prototype system and the tests conducted to prove the
validity of the system. After concluding in the Section 7,
current status and the future work is discussed in Section 8.

2. CODE MOBILITY

 Java/Jini provides support for code mobility that has been
crafted to implement the mobility mechanism based on [8].
If an agent wants to move to another AgentStation (either
from an AgentStarter or from an AgentStation), it marshalls
itself and calls a method on that AgentStation’s proxy which
allows the marshalled object to move to that AgentStation.
The proxy collects the marshalled object and transfers it to
the AgentStation. On receiving the marshaled agent, the
AgentStation unmarshalls that agent and after carrying out
some security checks, it allows its execution if the checks
are successful. If an agent is a ‘Service’ type (agents
registered with LUS), then the AgentStation allows the agent
to register with the LUS using the AgentStation’s discovery
and registration interface.

The agent is moved as a marshalled object from one
AgentStation to another (and also from AgentStarter to
AgentStation). This marshalled object has the state of an
agent saved inside it but no class definition. To unmarshall
the object, the receiving AgentStation must know its class
definition. The agent carries with itself a URL to the location
where its class file is located. This class file is packed in a
signed jar file and placed in a downloadable folder of the
HTTP Server. When an AgentStation unmarshalls the agent,
it also loads its class files after downloading the jar file from
the HTTP Server.

3. SYSTEM ARCHITECTURE

The services, both the agents and AgentStations in the
DIAMOnDS framework ensure reliability by having the
correct information by making use of Jini leasing
mechanism. For example, if a DIAMOnDS AgentStation
crashes unexpectedly, it will not have a chance to notify
interested agents and other AgentStations of its
unavailability in near future. At this point, Jini Lookup
Service (LUS) will recognize that the lease for this
AgentStation has not been updated in the last ‘n’ minutes
(configured at deployment time) and will remove its
registration. At the same time, the LUS will generate a
notification about unavailability of the AgentStation to all
the clients.

Similarly, if an AgentStation loses network connectivity,
it will be unregistered from the Jini Lookup Service (LUS)
automatically. The AgentStation service will render itself

unregistered because it is unable to renew its lease by
contacting a LUS and the LUS will un-register the
AgentStation because it did not renew its lease. As soon as
the network connectivity becomes available, the
AgentStation will once again register with the LUS and
renew its lease. During the time the network connectivity is
unavailable, Jini service mechanism allows the station to
carry out disconnected operation; waiting for its chance to
join the Jini network and the system as a whole acts in a self
healing manner requiring no manual interference by an
administrator or a user.

Communication among DIAMOnDS services takes place
through ‘proxies’, which are downloaded to the client
machine without the need to have an administrator to install
the code; all the required classes/interfaces needed by
another service or client to communicate with the original
service is downloaded at runtime. This feature allows
building of dynamic downloadable proxies of DIAMOnDS
services (AgentStation and agents) which can be tailored to
meet the constraints of the environment on which the client
module is executing. For example, a client module will have
different constraints on a desktop machine and a PDA and
the service communicating with the client may have to
present different proxies to enable effective execution and
reliable communication. Furthermore, these proxies are used
by the client through an interface and the client need not be
aware of the actual protocol being used by the proxy to
communicate with the service. This encapsulation allows
development of services for heterogeneous environments
with little overhead and programming ease.

The above features employed in the DIAMOnDS
framework allow a developer to extend a basic service from
the DIAMOnDS framework and build new customized
services with inherited fundamental DIAMOnDS features.

 The agents in DIAMOnDS framework have been
implemented as Jini services. This allows for agent
discovery by remote clients, fault tolerance through leasing
and Java Spaces [7] and remote monitoring of agents
through the client module.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THAT003 ePrint cs.DC/0305062

Figure 1: DIAMOnDS Architecture

Figure 1 illustrates the basic architecture of the
DIAMOnDS framework. As mentioned previously, there are
two services in this framework, the first is AgentStation
which provides its services to mobile agents, and the second
is the agent itself which provides its services to the end user.
Both the services register themselves with the Lookup
Services from where the clients, agents and the
AgentStations discover them. The agent is loaded at the
AgentStarter or the AgentStarter sub module in the
AgentStation and discovers all the AgentStations through the
Jini Discovery mechanism. The agent can then move to any
AgentStation and get executed to perform any task assigned
by the end user.

3.1. Agent Starter

AgentStarter module acts as a Jini client, thereby
discovering all the AgentStations that are running at a
particular time. The AgentStarter can load the agent from a
jar file into the JVM either locally from the file system or
remotely from a web server. As the agent is loaded into the
JVM from the local file system, an HTTP server is started
that serves the class file of the agent as and when required
by other agent station or the clients.

The AgentStarter provides the functionality of loading an
agent and then moving it to one of the discovered
AgentStations.

3.2. Agent Station

AgentStation is the main component of this framework.
AgentStations dynamically interact with each other and
provide the platform on which an agent can be hosted and
allowed to execute. Agents are authenticated by the
AgentStations using the security mechanism of the
framework before they are allowed to execute. Once an
agent has been authenticated, it is allocated a separate thread
having relevant priority.

Each AgentStation uses the Discovery & Registration
service (a sub module in the AgentStation) to register itself
with the Jini Lookup Services (LUSs) and also to maintain a
list of all other registered services. This information is also
provided to the hosted agents. On the request of a hosted
agent, the AgentStation registers the agent with the Lookup
Services. In effect, the agent uses the discovery and
registration mechanism of the AgentStation to register it and
to discover other services. The AgentStation has an
Execution Engine which provides an execution environment
to the authenticated agents that want to execute on this
AgentStation. This execution engine can be thought of as a
thread pool; each agent’s execution is carried out in a
separate thread. It allocates a new thread to every agent that
requires execution and once the execution is complete, kills
the thread.

Agent Starter sub module is also integrated into the
AgentStation which provides services of loading an agent
either from the local file system or from a remote HTTP
server. Security sub module validates incoming agents. It is
also responsible for maintaining trust between other
AgentStation services.

3.3. Agents

Mobile Agents are entities that perform some job on
behalf of its owner, can move around the network and get
executed on different AgentStations. An agent gets loaded at
the AgentStarter or the AgentStarter sub module at the
Agent Station either locally or remotely from its jar file.
When loaded at the AgentStation, the agent can move to any
Agent Station for its execution.

The Service Agent (which extends the generic agent)
contains a remote GUI [5] which enables a defined agent’s
GUI to be visible to the client. The GUI displayed at the
client, is sent in response to a remote call on the agent, after
a two way security hand-shake depending on the type of
agent. If any field/component in the remote GUI [5] of the
agent or AgentStation visible in the client module is
displaying a value from where the Agent is actually
executing, then that value will be determined by making a
remote call to the agent itself. Service Agent can register
itself with the LUS and any client can download its remote
GUI [5].

If an agent wants to move to another AgentStation (either
from an AgentStarter or fro m an AgentStation), it marshalls
itself and calls a method on that AgentStation’s proxy which
allows the marshalled object to move to that AgentStation.
The proxy then collects the marshalled object and the
AgentStation is notified that its proxy, which was
downloaded somewhere, has received an agent. The
AgentStation then proceeds to collect that marshalled object
from the proxy. The AgentStation then unmarshalls that
agent and after carrying out some security checks, it allows
its execution. If an agent is a ‘Service’ type (agents
registered with LUS), then the AgentStation allows the agent
to register with the LUS using the AgentStations discovery
and registration interface.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THAT003 ePrint cs.DC/0305062

The agent is moved as a marshalled object from one
AgentStation to another (and also from AgentStarter to
AgentStation). This marshalled object has the state of an
agent saved inside it but no class definition. To unmarshall
the object, the receiving AgentStation must know its class
definition. The agent carries with itself a URL to the location
where its class file is located. This class file is packed in a
signed jar file and placed at an HTTP Server. When an
AgentStation unmarshalls the agent, it also loads its class
files after downloading the jar file from the HTTP Server

Transactions are used in the framework for providing
atomic operations and to avoid being in an unstable state in
case of failure. The agent movement process is made atomic
with the use of transaction service provided by Jini. While
moving from one AgentStation Service to another, the agent
needs to un-register from the first AgentStation and register
again after arriving at the second AgentStation. During this
process, there is a chance of agent loss (if the agent fails to
register itself at the destination AgentStation) or duplication
(agent registered at two places). These situations are avoided
by implementing an atomic move operation.

3.4. Client

The client module acts as a Jini client, thus is able to
discover all the AgentStations and agents. The client module
can be used to perform the monitoring of the AgentStation
or the agents as both have registered their downloadable
GUI’s [5] in their proxies with the Lookup service.

The owner/creator uses the client module to download the
GUI of the AgentStations to perform remote administration
or to download the GUI of the agents to perform real time
monitoring or to interact with the agent.

4. SECURITY

Agent based systems have an inherent need for security.
The security requirements of such systems are twofold. Not
only is there a need for protecting a host from a malicious
agent, but it is also required that the mobile agent be
protected from malevolent hosts. Security architecture for
the DIAMOnDS system has been designed basing on the
notion of trust i.e. services with the need of security don’t
cooperate with each other unless trust is established among
them. Trust establishment is realized using the Public Key
Infrastructure (PKI) [9]. Cooperating entities must exchange
their certificates before providing any service to each other.
Figure 2 shows that an AgentStation possesses a Private Key
Store which contains the public and private keys of the
administrator of this AgentStation. It also has a Trust Store
which contains the exported certificates of trusted users who
are the administrators of other AgentStations. When an agent
moves, it carries the certificate of its owner/creator for
authentication purposes as it would be acting on behalf of its
owner/creator at the AgentStation and needs
owner’s/creator’s credentials.

Figure 2: Security Mechanism of DIAMOnDS

At present, two basic security mechanisms have been

implemented. The first involves trust management between
the agent’s owner/creator and the host (Agent Station). The
owner of an agent signs its jar file with his private key.
When a jar file is signed, the signer’s certificate is also
embedded in the jar file. Before moving an agent, the owner
needs to export its certificate to the target AgentStation on
which the owner/creator intends to execute the agent. Each
AgentStation maintains a set of trusted certificates with
itself. The owner of the AgentStation has the authority to
accept or reject an arriving certificate. When an agent
requests to move to an AgentStation, two checks are
performed. First, the owner’s certificate is checked to see if
it is trusted or not. Second, the signature of the jar file
providing the agent’s codebase is verified against its
contents, which determines whether or not there has been a
change in the contents after they were signed. Such a change
indicates malicious modification of classes not intended by
the creator of the agent and is unacceptable. Failure of any
of the above checks implies that the agent is not
authenticated. If the checks are successful, the agent is
allowed to execute at the AgentStation.

The second security measure is related to remote
monitoring and administration of the agent. Considering the
security aspects, there are two types of agent; one is open for
monitoring and controlling while the second type is closed to
everyone for this purpose other than the agent's
creator/owner. An agent’s GUI is not open to every client
except the one who owns it, unless the owner allows it to be
open to everyone. Downloading GUI of a protected agent
involves a handshake between the agent and the client
module. When a client needs to get an agent’s GUI, it signs
some randomly generated data with the agent’s private key.
This signed data is sent to the agent as part of the request to
get the GUI. The agent tries to verify this signature with its
owner’s certificate. A successful verification means that the
requestor is really the owner of the agent and the GUI is

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THAT003 ePrint cs.DC/0305062

delivered to the client module for the owner to see it. A
verification failure results in rejection of the request.

5. APPLICATION AGENTS

Three types of application agents have been developed on
the framework. These agents extend the service agent i.e
they act as Jini services.

5.1. File Access Agent

The File Access Agent serves the user by providing access
to the file system of the AgentStation where it is executing.
The owner/creator can be residing on a computer that is
resource constrained or the user can be interested in some
file store that is available on the remote AgentStation, then
the user can send the File Access Agent to that AgentStation
and by downloading the GUI of the File Access Agent in the
client module, the owner/creator can read/write to the file
system of the AgentStation. The results of the initial testing
of the modules are mentioned later.

5.2. Database Access Agent

The AgentStation may provide the service of data store by
establishing connections to various databases present on its
LAN to the dynamic services that it can host. It keeps the
updated information about these heterogeneous databases
and the Database Access Agent is provided with all this
information as it arrives on the AgentStation. The
owner/creator can monitor the agent by downloading the
agent’s downloadable GUI in the client module. The
owner/creator can interact with all the databases as if they
are local databases, just sending the query and getting the
results back.

5.3. Connectivity Test Agent

A Connectivity Test Agent has been developed that is able
to travel between two or more AgentStations and keep a log
of its arrival and departure time to test the validity of the
code mobility achieved. Its purpose is only experimental and
is used to test the validity of service availability and mobility
issues. The results of the test conducted are described below.

6. TESTING

The framework has undergone considerable testing to
verify the following:

• The basic agents are able to continue 'working'
actively for long durations of time. This feature is
desirable for specialized agents that will be used in
data mining jobs.

• Read/write performance of File Access Agent is
sufficiently comparable with Local File System, LAN
and Network File System read/write mechanisms.

• The agents are not lost or duplicated during the
movement process.

6.1. Mobility Test

The purpose of this test was to verify the above mentioned
first two points . Moreover this test verifies that the mobility
mechanism of this framework is stable enough to work in
practical networks that are inherently unreliable.
AgentStations were started at remote locations on WAN, one
at NUST, Pakistan and the other at CERN, Switzerland. An
agent was loaded at one of the AgentStation and given an
itinerary path to keep moving between these two
AgentStations, staying at one AgentStation for no more than
30 seconds. This agent was supposed to keep record of
arrival and departure time at/from each AgentStation which
could be retrieved later on. This agent continued its
migration between the two AgentStations for nearly 12
hours without being lost or duplicated. The readings
collected by this agent were also found to be correct and
were not lost during agent's movement (the agent keeps the
log within its migrating state and is not stored to any
persistent storage during its movement and execution).

6.2. File Access Tests

These tests were aimed at measuring the performance of
read / write operations through the File Access agent.
Readings were taken by measuring the performance over
LAN and WAN in comparison to carrying out these
operations without agents. The following charts show the
performance of the agent when in M Bytes/sec. The
performance is slower than Network File System as the
agents are built on top of RMI. (Tests were taken at both 100
Mbps and 10 Mbps Ethernet).

6.3. Improvement in File Access Rates

Originally the File Access agent transferred data through
method calls back to the client and effectively all the data
was transferred over RMI, thus seriously affecting data
transfer rates. This mechanism was altered to transfer data
over sockets (Java Sockets) and considerable improvement
in data transfer rates was achieved. A comparis on between
data transfer rates over RMI and Sockets is given below in
Figure 3 and 4.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THAT003 ePrint cs.DC/0305062

Figure 3: Read Performance of Agent – Comparison of
Sockets & RMI Data Transfer

Figure 4: Write Performance of Agent – Comparison of
Sockets & RMI Data Transfer

7. CONCLUSION

DIAMOnDS is an infrastructure for building mobile
agents with downloadable GUIs. It is built completely on
Java/Jini and besides allowing the end users to access their
agents conventionally as in toolkits like IBM Aglets [10] and
others, allows the agents to be published as services, which
makes it possible to monitor them remotely and move
around the network to optimally perform specific tasks for
its end users. The innovative concept of mobile agents acting
as mobile services in the Service Oriented Architecture
brings forth the better of both worlds.

8. CURRENT STATUS AND FUTURE WORK

Development of two specific agents that are relevant to
LHC experiments related data transfers is in progress.

One of the agents will be used to inform the agent’s owner
about the availability of a certain type of data in particular
data stores. In this scenario, it is assumed that data generated
through LHC experiments will be available through virtual
data tags in data stores at different tier levels. The agents
will be given criteria for search/requirement by their users
and these agents will move to an AgentStation closer to the
data store These agents will monitor the data stores for
availability/generation of the query data type and on
availability, it will inform its owner. Issues like timeout and
close matches will be handled by the agent itself.

A basic data searching agent has been implemented that
performs a query based search in a file system. This type of
agent analyses the contents of a file and based on the query,
assigns a relevance weight to the file. After searching
through one or many file systems, it returns to the user and
shows the result. The user can then download the files of his
interest. Large scale data generated as a result of High
Energy Physics [1] experiments is one possible area where
complex data mining ability can be purposefully introduced
in these agents.

The second type of agent related to LHC experiments is
the ‘Optimal Network Path Finding Agent’ which will be
used to determine optimal path for large scale data transfer
between different tiers on wide area networks. These agents
will collaborate to determine the best route for data
connection in terms of bandwidth available, network load
and other features that decide quality of service in wide area
network connections. For the collection of such parameters,
we intend to integrate this framework with MonaLisa [11].

Service UI specifications [5] allows to download the GUI
of the services in some resource constrained environment.
We intend to provide WAP access to agents and
AgentStations. When in place, this will allow the user of a
particular agent service to monitor the activities of his
personalized agent through a WAP enabled device. A
particular scenario for the user will be to determine, using
his mobile phone, where his agents is, what is it doing and
what portion of the job assigned to it has been completed. It
will also allow him to control his agent remotely on a
wireless device.

The security implemented in DIAMOnDS is embryonic at
this stage. The final release of Jini 2.0 toolkit [12] has added
many useful features like enhanced security, invocation
constraints etc. which can prove useful in the enhancement
of the existing security mechanisms.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6THAT003 ePrint cs.DC/0305062

Acknowledgments

We would especially like to thank Dr H Farooq Ahmad,
Specialist Engineer at Communication Technologies, Sendai
Japan and Shahzad Khan, Assistant Professor at NUST
Institute of Information Technology, Pakistan for their
useful technical guidance and assistance during the project.
We would also like to thank the administration and faculty
members of National University of Sciences and
Technology, Pakistan and California Institute of
Technology, USA for their generous technical and moral
support throughout this project.

References

[1] Harvey B. Newman, Iosif C. Legrand, Julian J. Bunn,
“A Distributed Agent-based Architecture for
Dynamic Services”, CHEP - 2001, Beijing, Sept
2001.

[2] Jini, http://www.jini.org/
[3] The JXTA Project, http://www.jxta.org/
[4] Simple Object Access Protocol (SOAP) 1.1,

http://www.w3.org/TR/SOAP/

[5] The Service UI Pro ject,
http://www.artima.com/jini/serviceui/

[6] Lange, D.B. and Oshima, “Mobile Objects and
Mobile Agents, The Future of Distributed
Computing”, Programming and Deploying Java™
Mobile Agents with Aglets™, Addison-Wesley
(ISBN: 0-201-32582-9), pp.1 -12, 1998.

[7] JavaSpaces Technology,
http://java.sun.com/products/javaspaces/

[8] Jasson Bayassee, “Unleash mobile agents using Jini”,
http://www.javaworld.com/javaworld/jw-06-2002/jw-
0628-jini.html, June 2002.

[9] Public Key Infrastructure (PKI) Home:
http://csrc.nist.gov/pki/

[10] IBM Aglets, http://www.ibm.co.jp/trl/aglets/
[11] MONA LISA: http://monalisa.cacr.caltech.edu/
[12] The Davis Project, http://davis.jini.org

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7THAT003 ePrint cs.DC/0305062

