CHEP 2003, La Jolla California

The Clarens Web Services Architecture

Conrad D. Steenberg and Eric Aslakson, Julian J. Bunn, Harvey B. Newman, Michael Thomas, Frank

van Lingen

California Institute of Technology, Pasadena, CA, 91125, USA

Clarens is a Grid-enabled web service infrastructure implemented to augment the current batch-oriented Grid
services computing model in the Compound Muon Solenoid (CMS) experiment of the LHC. Clarens servers
leverage the Apache web server to provided a scalable framework for clients to communicate with services
using the SOAP and XML-RPC protocols. This framework provides security, session persistent storage, service
discovery, and call routing to back-end services. As an implementation policy Clarens uses widely implemented
standards wherever possible instead of inventing new standards.

This paper describes the basic architecture of Clarens, while a companion paper describes clients and services
that take advantage of this architecture. More information and documentation is also available at the Clarens

web page at http://clarens.sourceforge.net.

1. Introduction

The ascendance of Grid-like [4] technologies has
been all but necessitated by the sheer volume of data
produced in both science and commerce. In response
to this increased uptake in High Energy Physics in
particular, the traditional batch-oriented implementa-
tions [5][12] using home-grown protocols have started
to adapt to an industry-wide move to standardized
interfaces and protocols [6].

In this context the CAIGEE [8] project was started
to develop a specific application of Grid technologies
to the area of interactive analysis by end-user physi-
cists. A diagram showing Clarens as the interface be-
tween distributed clients and Grid services is shown
in Figure 1.

ROOT Browser PDA
‘ Web client ‘ Web client

/ Cla;}ns \

Y Grid
Plamner 1 [———uy Catalog Processes
Virtual Data
GDMP
Catal
Y / atatog Monitoring
Plamer 2 5| | yaterialized

Data Catalog

Execution
Priority manager

Grid-wide
Execution
Service

Figure 1: CAIGEE architecture diagram.

In keeping with its public standards focus, clients

MONTO008

can include anything from an end-user analysis pack-
age like ROOT [10], web browsers or even web-enabled
PDAs. Other Clarens servers may also act as clients.

Back-end services planned or implemented include
data movement, Grid-wide execution planning and
scheduling, cluster job scheduling as well as metadata
catalogs.

2. Infrastructure

In order to save development time and improve scal-
ability, The Clarens server is implemented as an ex-
tension to the Apache [1] multi-process web server
using the mod_python extension in the Python byte-
code compiled language. Most CMS sites have these
components already installed on processing cluster
head nodes as part of the Redhat 7.3-based OS
used. Clarens itself is both architecture and platform-
dependent by virtue of using Python as an implemen-
tation language.

The Clarens architecture is depicted in Figure 2 in
the order that requests are processed by the server.
Firstly (top), the Apache server receives an HTTP
POST or GET request from the client, and invokes
Clarens based on the form of the URL specified by
the client. Other URLs are handled as usual by the
server according to its configuration. Secure Sockets
Layer (SSL) encrypted connections are handled trans-
parently by the Apache server, with no special coding
needed in Clarens itself to decrypt (encrypt) requests
(responses). Encryption of network traffic is optional,
however, in cases where it is not required, without
exposing client or server credentials.

After the request has been processed, a response is
sent back to the client, which is usually encoded as an
RPC response, but may also be in the form of binary
data. GET requests returns a file or an XML-encoded
error message to the client, while XML-RPC [15] or
SOAP[13]-encoded POST requests return a similarly
encoded response or error message.

CHEP 2003, La Jolla California

‘ HTTP client ‘

Apache web

server
Mod_python

E 8 a

] [=]
gUR S

a

Clarens

o]
w -
g g 28l o
S 86/ s E S5/ 8

-y o eQ
< «w 8 1

Figure 2: Clarens architecture diagram.

3. Authentication

In keeping with the Grid tradition, Clarens uses
a so-called Public Key Infrastructure (PKI) based
authentication system that relies on X509 format-
ted certificates issued by a Certification Authority
(CA) along with asymmetric encryption using public
and private keys. The authentication protocol of the
server is implemented at the application level, thus
eliminating the need for a custom security layer on
the client side.

If an SSL-encrypted connection is used the client’s
certificate is provided to the server as part of the con-
nection negotiation stage. The Apache server passes
this information to the Clarens layer. This is the de-
fault for browser-based clients which in general have
a well developed client-side PKI security infrastruc-
ture. In this case the authentication step in initi-
ated by calling the RPC method system.auth2()
with no arguments. A user session ID is requested
by the client by setting the clarens username cookie
value in the message header to the requested session
ID, and setting the clarens_password cookie value to
BROWSER. Clarens responds by returning its own cer-
tificate as well as it’s part of the session ID encoded as
an RPC response. In subsequent requests the client
must set the clarens_password to this server session
ID. Browsers will automatically send these cookie val-
ues in subsequent requests.

In the case of an unencrypted connection, or a client
not able to send it’s certificate as part of the connec-
tion negotiation phase, the session ID and client cer-
tificate must be sent using as the username and pass-
word in the the HTTP basic authentication header
invoking the system.auth() method. The server re-
sponds with a list of (1) its certificate, (2) the server
session ID encrypted using the user’s public key, and
(3) the client session ID encrypted using the server’s
private key. This ensures that only someone in posses-

MONTO008

sion of the client’s private key can discover the server
session ID, and also that the server is in possession of a
private key matching the certificate sent as (1) above.
In subsequent requests the client should set the client
session ID as username, and server session ID as pass-
word in the HTTP basic authentication header.

Once this certificate and session ID exchange is
completed, both the client and server certificates can
be verified against the publicly available CA certificate
chain, knowing that the other party is in possession
of a matching private key.

4. Authorization

Authorization of clients to access server resources
(invoking methods, accessing files etc.) is done within
the framework of a hierarchical Virtual Organization
(VO) with members uniquely identified by their Dis-
tinguished Names (DNs) issued by the CAs as part of
all X509 certificates.

4.1. Virtual Organization

Each Clarens server instance manages a tree-like
VO structure, as shown in Figure 3, rooted in a list
of administrators. This group, named admins, is pop-
ulated statically from values provided in the server
configuration file on each server restart. The list of
group members is cached in a database [2], as is all
VO information. The admins group is authorized to
create and delete groups at all levels.

Each group consists of two lists of DNs for the group
members and administrators respectively. Group ad-
ministrators are authorized to add and delete group
members, as well as groups at lower levels. The
group structure is hierarchical because group mem-
bers of higher level groups are automatically members
of lower level groups in the same branch.

The example in Figure 3 demonstrates the top-level
groups A, B, and C, with second level groups A.1, A.2,
and A.3.

A more concrete example might be to define groups
CMS, Atlas, LHCb, and Alice, then for CMS, to de-
fine CMS.USA, CMS.CERN, CMS.UK, CMS.Germany. At
the third level, one might define CMS.USA.Caltech,
CMS.USA.UFL, CMS.USA.FNAL. Management for the
latter three groups may then be delegated to the insti-
tutes themselves, thereby implementing a distributed
trust model that has lower maintenance overhead as
well as being more representative of the real organi-
zational structure.

As a further optimization, the hierarchical in-
formation in the DNs may also be used to define
membership, so that only the initial significant
part of the DN need to be specified. DNs are
structured to include information on the country

CHEP 2003, La Jolla California

Group: admins
DN1, DN2, ...

Group A)/ Group B '/ Group C)/
admins i admins
—< DN1, DN2, ... DN1, DN2, ... DN1, DN2, ...

7 7

Group A.1 Group A.2 Group A.2
admins i in;
—» DN1, DN2, ... % DN1, DN2, ... | {# DN1, DN2, ...

7 o7

DN1, DN2, ...

Figure 3: Clarens virtual organization diagram.

(C), state/province (ST), locality/city (L), orga-
nization (O), organizational unit (OU), common
name (CN), and e-mail address (Email). An ex-
ample DN issued by the DOE Science Grid CA
is /0=doesciencegrid.org/0U=People/CN=John
Smith 12345 for individuals and
/0=doesciencegrid.org/0U=Services/CN=host
/www.mysite.edu for servers. To add all
individuals to a particular group, only
/0=doesciencegrid.org/0U=People need to speci-
fied as a member DN.

4.2. Access Control Lists

Execution of RPCs (web service methods) as well as
mapping of certificate DNs to users on the server sys-
tem is controlled by a set of hierarchical access control
lists (ACLs) in a similar fashion to the VO structure
described above, and modeled after the access control
(-htaccess) files used by Apache.

Methods have a natural hierarchical structure
modeled after Python’s module infrastructure. In
fact all Clarens modules are also Python modules.
Clarens places no arbitrary restrictions on the depth
of this hierarchy, but a depth of two or three
levels is most common, e.g. module.method or
module.submodule.method.

An ACL consist of an evaluation order specification
(allow, deny or deny, allow) followed by a list of DNs
allowed, groups allowed, DNs denied and groups de-
nied access. A DN or group granted access to a higher
level method automatically has access to a lower level
method, unless specifically denied at the lower level,
and is denied at the higher level unless allowed at a

MONTO008

Table I Method ACL example.

| Object | Field Value
mod order deny, allow
allow DNs /0=doesg.org/0U=People/CN=John Smith

/0=doesg.org/0U=People/CN=Ng Siong
allow groups |CMS.USA

CMS . CERN

deny DNs /0=01duni/0U=physics/CN=01d Account

deny groups |crackers

mod .meth | order deny, allow
allow DNs
allow groups |CMS.USA.Caltech
CMS.USA.UFL

deny DNs /0=Caltech/0U=CACR/CN=Ed Peng

deny groups

lower level. The ACL specification is therefore evalu-
ated from the lowest applicable level to the highest.

According to the example ACLs in Table I, when
the method mod.meth is invoked, the second ACL is
applied, but when any other method in module mod is
invoked, the first ACL is applied.

4.3. User Mapping

In the traditional batch-oriented Grid architecture,
being able to start long-running CPU intensive jobs
as a certain system user is of crucial importance. E.g.
the Globus toolkit [5] implements the concept of a
so-called gridmap file that maps system users to cer-
tificate DNs. It is implemented as a flat text file with
two values per line, namely the DN and the system
user.

Clarens similarly contains the notion of mapping
DNs to user names. Instead of a flat file, a structure
similar to the ACLs described above is used, with the
username taking the place of the method name, with
one exception: the deny group and deny individual
fields are not used, since denying access to process
creation methods can be done using the method ACLs
themselves.

At this point it should be clear that in both the
VO, ACL, and user mappings specification as little
information as possible is stored in order to minimize
search times for list memberships. Searching these
lists are in the critical path for the invocation of any
method, though, and must be optimize as far as prac-
tical. This is done by storing lists of DNs as strings
in a structure called a ternary tree which is discussed
in the appendix.

CHEP 2003, La Jolla California

from mod_python import apache
from clarens_util import
build_response, write_response

def echo(req,method_name,args):
"""Returns the method argument"""
response=build_response(req,"echo",args)
write_response(req,response)
return apache.0K

methods_list={’echo’:echo}
methods_sig={’echo’:[’string,string’]}

Figure 4: Clarens module example.

4.4. Auditing

All method invocations are logged with a time-
stamp in the Apache server log files to provide a record
of client/server transactions.

5. Modular Architecture

Clarens provides a framework for extending its func-
tionality via new modules installed in subdirectories.
Each subdirectory would appear as a new method,
root, e.g. a system subdirectory would have its meth-
ods accessible as system.method etc. Modules can be
implemented as either interpreted Python bytecode,
or as compiled C/C++ shared libraries if code execu-
tion speed is important, and are loaded on demand
by the Python interpreter in each Apache process,
thereby providing crash-protection between different
processes, a major consideration for highly available
servers.

Provision is also made for users on the server system
to install their own modules in subdirectories under
their home directories. These modules are accessible
using the format ~user.module.method.

Figure 4 shows an example of the simplest module
implementation for a method echo, that when placed
in a file named echo/_init__.py returns its argument
unchanged when called as echo.echo(argument).

Two important elements identifies this as a Clarens
module: the methods_list and methods_sig struc-
tures identifying the list of methods and their signa-
tures. Work is underway to use WSDL as method
signatures instead if the more limited XML-RPC sig-
natures used in this example.

MONTO008

6. Persistency

Since the HTTP protocol does not require' persis-
tent connections, it is important that session informa-
tion be stored persistently on the server side. This
has the positive side-effect of allowing clients to sur-
vive server failures or restarts transparently without
having to re-authenticate themselves to the server in
those cases.

The most important session information that is
stored by the Clarens server is the authentication in-
formation for each session. The Berkeley database [2]
is used for this purpose.

7. Scalability, failover, clustering

Since Clarens is built upon commodity software
components and standard operating system services,
it relies on these components to be set up to achieve
these goals. Specifically, the Apache web, server, the
filesystem, database and network components needs
to be configured by the system administrator.

8. Future developments

Work is underway to extend Clarens from being an
essentially client/server system to being a truly dis-
tributed system in a network of mutually aware peers
and superpeers that provide services. The most press-
ing need for large scale Physics analysis is the need for
truly distributed data catalogs for a variety of Physics
data and metadata, and of course a matching search
capability.

A switch to a relational database for persistent data
storage is planned to support more advanced data
management than the Berkeley database’s key/value
mechanism can provide. Along with this change, file
ACLs will also be implemented.

Werever practical Clarens aims to be compatible
with the OGSA framework, with support for SOAP
and WSDL being important first steps in that direc-
tion.

9. Conclusion

Clarens is a powerful, yet simple web services ar-
chitecture with a strong emphasis on security for dis-
tributed virtual organizations. It draws upon a rich
base of commodity protocols and software components

In the HTTP 1.1 standard, persistent connections are the
default for performance reasons, but the protocol is still inher-
ently stateless, as opposed to e.g. the FTP protocol.

CHEP 2003, La Jolla California

to provide a platform for the deployment of analysis-
oriented web services.

A companion paper describes services and clients
that take advantage of this platform [14].

Acknowledgments

This work supported by Department of Energy con-
tract DE-FC02-01ER25459, as part of the Particle
Physics DataGrid project [9], and under National Sci-
ence Foundation Grant No. 0218937.

Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the
authors, and do not necessarily reflect the views of the
National Science Foundation.

Clarens development is hosted by SourceForge.net
[11].

References

[1] Apache Web server, Apache Software Founda-
tion, http://www.apache.org.

[2] Berkeley Database, Sleepycat Software Inc.,
http://www.sleepycat.com.

[3] Bentley, J, Sedgewick, B, Ternary
Search Trees. Dr. Dobb’s Journal,
http://www.ddj.com/documents/s=921/
ddj9804a/9804a.htm, April 1998.

[4] Foster, I, The Grid: A New Infrastructure for
21st Century Science. Physics Today, Vol. 55 (2),
pp- 42 — 47, 2002.

[5] Foster, I, Kesselman, C., Globus: A Toolkit-
Based Grid Architecture, in The Grid, A
Blueprint for a New Computing Infrastructure,
Eds. Foster, I. and Kesselman, C., Morgan Kauf-
man, 1999.

[6] Foster, I., Kesselman, C., Nick, J., Tuecke, S.,
The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems,
Globus Project, 2002.

[7] mod_python Python interface to the Apache web
server, http://wuw.modpython.org.

[8] Newman, H.B., Branson, J., CMS Anal-
ysis: an Interactive Grid-Enabled En-
vironment, NSF ITR proposal 01-149,

http://pcbunn.cacr.caltech.edu/
CAIGEE proposal_v021.htm, 2002.
[9] Particle Physics
http://www.ppdg.net.
[10] ROOT, An Object Oriented Analysis Framework,
http://root.cern.ch.
[11] SourceForge.net Open Source Software Develop-
ment Website http://www.sourceforge.net.
[12] The Sun ONE Grid Engine,

http://wwws.sun.com/software/gridware/.

DataGrid,

MONTO008

[13] Simple Object Acess Protocol, W3 Consortium,
http://wuw.w3.o0rg/2002/ws/.

[14] Steenberg, C.D., Aslakson, A., Bunn, J.B., New-
man, H.B., Thomas, M., van Lingen, F., Clarens
Client and Server Applications, This Volume, pa-
per TUCTO005, 2003.

[15] XML Remote Procedure Call
http://www.xmlrpc.com.

Website,

Appendix: Ternary trees

As pointed out in Section 4, several lists must be
searched for every method invocation to enforce access
control, establish group membership and map certifi-
cate DNs to system user names.

Figure 5: Ternary tree graph for the words: Clarens
ternary tree example May 2003.

The keys for these lists (method, group, or user
names) are kept in Python dictionary objects, which
are implemented as hash tables. Although it is cer-
tainly possible to store the aforementioned lists in
hash tables, these structures lack an important fea-
ture, namely the ability to search for initial sub-
strings. E.g. if we are presented with the query DN
/0=myorg/0U=People/CN=John Smith, but only the
string /0=myorg/0U=People is stored.

Initial substring searches are particularly suited to
a data structure called a ternary tree [3] that contains
nodes for less than, equals and greater than compar-
isons for string fragments. In contrast to the refer-
ence implementation, the Clarens ternary trees con-
tain two characters per node, reducing the storage re-
quirements of the tree.

CHEP 2003, La Jolla California

When presented with the above DN, the tree can
be traversed by comparing and branching every two
characters, and returning the number of characters
matched if a leaf node is reached, or a failure can be
signaled if a leaf node is not reached. The returned
number can be compared with the length of the query
DN: an exact string match corresponds to an equal
number of matched characters, while a lower number

MONTO008

corresponds to a substring match.

The ternary tree structure is implemented as a
Python extension module in C. Informal tests with
10,000 DNs on a 933 MHz PC produces roughly
300,000 searches/second for the worst case where each
DN is present in the tree, i.e. the maximum number
of branches taken per search.

