
FAYE: A Java Implement of the Frame/Stream/Stop Analysis Model.
S. Patton
LBNL, Berkeley, CA 94720, USA

FAYE, The Frame AnalYsis Executable, is a Java based implementation of the Frame/Stream/Stop model
for analyzing data. Unlike traditional Event based analysis models, the Frame/Stream/Stop model has no
preference as to which part of any data is to be analyzed, and an Event get as equal treatment as a change
in the high voltage. This model means that FAYE is a suitable analysis framework for many different type
of data analysis, such as detector trends or as a visualization core. During the design of FAYE the emphasis
has been on clearly delineating each of the executable’s responsibilities and on keeping their implementations
as completely independent as possible. This leads to the large part of FAYE being a generic core which is
experiment independent, and smaller section that customizes this core to an experiments own data structures.
This customization can even be done in C++, using JNI, while the executable’s control remains in Java. This
paper reviews the Frame/Stream/Stop model and then looks at how FAYE has approached its implementation,
with an emphasis on which responsibilities are handled by the generic core, and which parts an experiment must
provide as part of the customization portion of the executable.

1. Introduction

The Frame/Stream/Stop model developed for
CLEO III analysis was originally developed in
C++ [1]. Since then is has been successfully deployed
in a number of rolls at CLEO. Meanwhile the IceCube
experiment, which has adopted Java as its main lan-
guage for DAQ and Data Handling, wanted to use the
Frame/Stream/Stop model in its code. This meant
that a Java version of the model needed to be devel-
oped.

2. The Frame/Stream/Stop Model

Before examining the Java implementation of the
Frame/Stream/Stop model it is worthwhile reviewing
the model itself. The core idea of the model is that
any analysis of data taken from a H.E.P. experiment is
essentially based upon an “electronic picture” of the
experiment at certain moments in time. This “pic-
ture” is made up of various different elements which
change over time and, most importantly, change at dif-
ferent rates, e.g. a detector’s geometry should change
much less frequently than its high voltage (HV) sta-
tus. Given these ideas the following components are
defined in the Frame/Stream/Stop model.

Record This is a set of related data, all of which all
will conceptually change at the same time.

Frame The “electronic picture” of the experiment
that is composed of different types of Records,
all of whom are related to the same time.

Stream A set of Record, all of the same type, from
different times.

Stop The occurrence of a new Record in a Stream “of
interest”. When this occurs during execution
the Frame corresponding to the Stop is passed
to analysis routines for processing.

Active Stop A Stop which occurs on a sequential
Stream (the Stream does not have to be or-
dered).

Passive Stop A Stop which occurs in response to,
and precedes, an Active Stop. i.e. if the Record
in some Stream of interest changes when an Ac-
tive Stop occurs, the The Frame corresponding
to this Stream of interest is passed for processing
before the Frame corresponding to the Active
Stop is supplied.

Figure 1 shows off the ideas of a Record, a Stream
and a set of Frames. In this Figure the three hori-
zontal bands, from top to bottom, in each diagram
represent the Geometry, HV and Event Streams. The
solid blocks of color in these Stream represent an ap-
propriate Record in that Stream, with the label indi-
cating the time associated with that Record. The tall
black open rectangle represents a Frame which con-
tained either the Records corresponding to the time
of the Frame, the most recent Record in a Stream
which has no Record matching the time of the Frame
(as seen for the Geometry Stream in Figure 1(b)), or
no Record for a Stream that has no record prior to
the time of the Frame (as seen for the Event Stream
in Figure 1(b)).

Figure 2 helps demonstrate the difference between
Active and Passive Stops using the example of an
Event Display. In this case the Event and Geome-
try Streams are the Streams of interest for this ex-
ecutable. The executable is driven by a sequence of
Event Records each of which generate an Active Stop.
The Geometry Stream Records, on the other hand, are
not provided sequentially but rather are read from a
database to fill in the Frames needed for the Active
Stops. As can be seen in the Figure, before the first
Active Stop can be supplied, a Passive Stop cause by
the reading of the initial Geometry Record should be
supplied to the analyses so that they can process this
initial geometry before processing the first Event.

MOLT005 ePrint cs.SE/0306076

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1

Geometry
(t=0)

HV
(t=1)

Event
(t=50)

Frame
(t=50)

(d) nth Event read out
Geometry

(t=0)
HV

(t=1)
Event
(t=2)

Frame
(t=2)

(t=0)
y

HV
(t=0)

Frame
(t=0)

(a) Detector exists, HV is off. (b) HV turned on.

(c) First Event read out.

Geometry
(t=0)

HV
(t=1)

Frame
(t=1)

Figure 1: The ideas of a Record, a Stream and a set of Frames.

Active Stop Active Stop

Geometry
(t=0)

HV
(t=1)

Event
(t=2)

Event
(t=50)

Passive Stop Active Stop
Geometry

(t=0)
HV

(t=0)

HV
(t=1)

Event
(t=2)

(a) Active Event Stops (b) Preceding Passive Geometry Stop

Figure 2: An illustration of the difference between Active and Passive Stops.

3. Implemention of the
Frame/Stream/Stop model

The Java implementation of the
Frame/Stream/Stop model is broken down into
three separate layers. The first and most general
layer is a generic record processing loop. This
part of the implementation is based on the classic
source/listener pattern that is used throughout the
standard Java libraries. In fact, this layer is so
general that it is scheduled to become part of the
freehep Java library [2]

The next layer implements the major ideas of the
Frame/Stream/Stop model and, as such, contains the
logic needed to supply Frames to analyses. However
as the exact definitions of Records and Streams are
experiment dependent these detail are included in the
third layer, rather than the second.

The third layer is the only layer that an experi-
ment needs to provide to tailor FAYE to work with
their experiment. This layer includes the definition of

Records and Streams and also includes the mechanism
to dispatch Frames to the correct analysis routines.

3.1. The freehep Layer

The generic record loop code is contained in the
org.freehep.record packages. The core interface in
these part of the code is the RecordListener inter-
face.

3.1.1. The RecordListener interface

The RecordListener interface defines the meth-
ods that any analysis class must implement in order
to be executed as part of a record loop. Figure 3
shows the life-cycle that all implementations of the
RecordListener interface are expected to follow.

When a RecordListener instance is created it
starts off in a dormant state. When a record loop is
about to begin, the instance will receive a configure
message and transition into the configured state. This
transition gives the instance an opportunity to read

MOLT005 ePrint cs.SE/0306076

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2

Active

Dormant

Configured

configure

Dormant

Processing

recordSupplied

Configured

recordSupplied Processing

Suspended

suspend

Processing

reconfigure
SuspendedConfigured

resume

SuspendedConfigured

suspend

SuspendedConfigured

finish

Suspended

Figure 3: The life-cycle of the RecordListener interface.

and respond to any input parameters that may have
been set, and thus prepare itself for recordSupplied
messages.

In the course or normal processing a
RecordListener interface can expect to receive
one or more recordSupplied messages after it has
been configured. The first of these messages will
cause the instance to transition into the processing
state, where it will remain while it receives more
recordSupplied events.

Eventually there will be no more records to supply,
either because a user defined limit has been reached
or no more Records are available. When this happens
the instance will receive a suspend message which will
cause it to transition into the suspended state. This
transition allows the instance to release and time-
critical resources, e.g. database locks, so that other
jobs can continue while this job is not processing
records.

There are three possible transitions out of the sus-
pended state, two of these transitions return the in-
stance to a configured state, while one returns it
to the dormant state. The difference between the
reconfigured and resume messages, both of which

cause a transition into the configured state, is that
the first of these implies that the input parameters
to the instance of RecordListener may have changed
and that the instance should be read and respond to
these new values, while the other message guarantees
that none of these parameters have changed and so
the instance can resume where it left off.

The other transition out of the suspended state is
caused by a finish message being received. This sig-
nals that the instance is not longer in the set of classes
that will be executed if or when another record loop is
executed. This transition allows the instance to clean
up any intermediate data it contains and, if necessary,
output a summary of the processing it has done.

The instance of a RecordListener can expect to
only be destroyed from the dormant state. This gives
the instance one last change to cleanly shut down.
However, as this transition is cause by the finalize
Java method it should normally not be used as there is
no determinist way of knowing when or if this method
will be called.

The state machine shown in Figure 3 leads to the
RecordListener interface as declared in Figure 4.

MOLT005 ePrint cs.SE/0306076

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3

public interface RecordListener
extends EventListener

{
public void configure(ConfigurationEvent event);
public void finish(RecordEvent event);
public void recordSupplied(RecordSuppliedEvent event);
public void reconfigure(ConfigurationEvent event);
public void resume(RecordEvent event);
public void suspend(RecordEvent event);

}

Figure 4: The RecordListener interface.

3.1.2. The other classes and interfaces

The other classes and interfaces in the
org.freehep.record packages provide tools that
can be used in conjunction with RecordListener
interface. The following list details some of the issues
these tools tackle:

Sequencing This allows a set of RecordListeners to
be executed sequentially.

Branching This enables two sequences of
RecordListeners to be executed indepen-
dently of each other.

Conditional execution This allows for preemptive
termination of a sequence of RecordListeners
when it has been decided that continued execu-
tion would be a waste of time.

Source interfaces This defined the interfaces which
should be implemented for sequential and inter-
active processing of the record loop.

3.2. The FAYE Layer

The FAYE layer implements the mechanics needed
to run the Frame/Stream/Stop model on to of the
generic record loop. Its responsibilities lie mainly in
the area of the creation of Frames, which serve as
the records in this set-up. This should not be con-
fused with the idea of Records that are elements of
the Frame itself.

This layer provides a FayeSource class which is
an implementation of the record source interface that
is declared in the freehep layer. This implementa-
tion contains a set of FayeStopSource objects, each
of which is able to read Record data from a single
source, e.g. a file, database, etc., and provide it to the
FayeSource instance so that it can work out which is
the next Stop that should be used to create the next
Frame supplied to the analysis. The Frame itself is
created using the FrameFactory interface of declared
in this layer. By using a factory interface and leaving
the exact implementation to be contained in the Ex-
periment’s layer, an experiment is free to choose how

it wants to access data in the Frame. The created
Frame is returned for use in the generic loop.

The FayeStopSource objects contained in the
FayeSource are not only responsible for reading
Record data from their own sources, but they are
also required to supply to the FayeSource object the
next Active Stop they can read and, given an Active
Stop, the “earliest” Passive Stop they can read. The
FayeStopSource can also act as a RecordListener so
that it can can be managed by the RecordListener’s
life-cycle and, more importantly, its recordSupplied
implementation can be used to load the Frame with
the appropriate data from its source.

The single RecordListener implementation pro-
vided by this layer is the FayeListener class. This
acts as a two phase listener. During the first phase,
remembering that the new Frame has already been
created, all the FayeStopSource objects get an op-
portunity to add their data to the Frame. The second
phase then supplies this filled Frame to the analysis
RecordListener implementations.

3.3. The Experiment (IceCube) Layer

The Experiment’s layer allows an experiment to
specialize this framework to it own situation. In
this paper we will use the IceCube experiment as
the example experiment. The main aim of the spe-
cialization is to enable the inclusion of the exper-
iments own Streams into the frameworks and han-
dle the dispatch of the Frames to the correct meth-
ods. Figure 5 shows the standard way of imple-
menting this. The IceCubeListener class defines
methods for each of the standard Streams in the ex-
periment. The IceCubePlugin class bring together
the generic RecordListener interface and experiment
specific one and handles the dispatch of the Frames
to the right method by using an instance of the
IceCubeSupport class. This class, in turn, imple-
ments its recordSupplied method as a large switch
statement that matches the Stream which caused the
Frame to be supplied to the matching method in the
IceCubeListener interface.

MOLT005 ePrint cs.SE/0306076

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4

IceCubeListener

geometry(IceCubeFrame frame);
hv(IceCubeFrame frame);
event(IceCubeFrame frame);

RecordListener

IceCubePlugin
recordSupplied(RecordSuppliedEvent event);

Frame frame =
 factory.lookupFrame(event.getRecord());
Stream stream = frame.getStopStream();
if (stream.equals(IceCubeStream.GEOMETRY)) {
 listener.geometry(frame);
} else if (stream.equals(IceCubeStream.HV)) {
 listener.hv(frame);
} else if (stream.equals(IceCubeStream.EVENT)) {
 listener.event(frame);
}

IceCubeSupport
recordSupplied(RecordSuppliedEvent event);

support.recordSupplied(event);

Figure 5: The organization of classes in the Experiment’s layer.

4. Summary

The Frame/Stream/Stop model provides a flexible
framework in which to develop H.E.P. analyses. This
has been demonstrated by its C++ implementation
at CLEO.

The Java implementation of this model is based on
a freehep foundation, which means that it can easily
be used elsewhere, for example as part of JAS3 [3].

An experiment only needs to specialize around half
a dozen classes to tailor this framework to it own sit-

uation.

References

[1] CHEP ’97 Berlin, “Design and Implementation of
the CLEO III Data Analysis Model”, C.D.Jones,
et al., Parallel talk A380

[2] http://java.freehep.org
[3] http://jas.freehep.org

MOLT005 ePrint cs.SE/0306076

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5

