
POOL File Catalog, Collection and Metadata Components
C. Cioffi
University of Oxford, Oxford, OX13NP, UK
S. Eckmann, D. Malon, and A. Vaniachine
Argonne National Laboratory, Argonne, IL 60439, USA
M. Girone, H. Schmuecker, and J. Wojcieszuk
CERN, 1211 Geneve 23, Switzerland
J. Hrivnac
LAL, Orsay, France
Z. Xie∗
Princeton University, Princeton, NJ 08544, USA

The POOL project is the common persistency framework for the LHC experiments to store petabytes of exper-
iment data and metadata in a distributed and grid enabled way. POOL is a hybrid event store consisting of a
data streaming layer and a relational layer.
This paper describes the design of file catalog, collection and metadata components which are not part of the
data streaming layer of POOL and outlines how POOL aims to provide transparent and efficient data access for
a wide range of environments and use cases - ranging from a large production site down to single disconnected
laptops.
The file catalog is the central POOL component translating logical data references to physical data files in a grid
environment. POOL collections with their associated metadata provide an abstract way of accessing experiment
data via their logical grouping into sets of related data objects.

1. Introduction

The POOL project[1] is the common persis-
tency framework for the LHC experiments to store
petabytes of experiment data and metadata in a dis-
tributed and grid enabled way. The POOL is a hybrid
event store combining C++ object streaming technol-
ogy such as Root I/O [2] for the bulk data with a
transactionally safe Relational Database store such as
MySQL for file catalog, collection and metadata.

This paper describes the design of POOL compo-
nents which are not part of the data streaming layer[3]
and outlines how POOL aims to provide transparent
and efficient data access for a wide range of environ-
ments and use cases - ranging from a large production
site down to single disconnected laptops.

The POOL file catalog is the central POOL com-
ponent translating logical data references to physical
data files in a grid environment. POOL collections
with their associated metadata add another more ab-
stract way of accessing experiment data via their logi-
cal grouping into sets of related data objects. Ad hoc
queries on the collections provide physicist with an
efficient way to extract useful data.

∗current address: CERN, 1211 Geneva 23, Switzerland

2. File catalog component

2.1. Purpose

In a file based persistency mechanism such as
POOL, the storage components need to operate on
the contents of the file. One should be able to navi-
gate from one object to the other even if they are not
stored in the same file. Using an external file cata-
log to keep track of the physical location of the file is
more flexible than hard-coding the location informa-
tion in the file itself. It allows the file to be moved or
replicated.

In the grid environment, high level applications
view only logical files. A logical file does not exist
physically. A physical file and all its copies can be
viewed as the same logical file. In another word, phys-
ical files are representations of the logical file. To oper-
ate on the contents of a logical file, a service is needed
to map the logical file to one of its physical represen-
tations and this physical file can then be opened.

The physical location of a file can be represented
by its Physical File Name(PFN) while the logical file
can be represented by a unique logical identifier. In
POOL, this identifier is called the file ID and is gener-
ated via the GUID (Global Unique Identifier) mecha-
nism.

The file catalog component in POOL is responsible
for maintaining a list of physical locations of acces-
sible files together with their unique and immutable
IDs and translating the logical file reference into its
physical representation. It is a basic component for
object navigation and grid integration.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint cs.DB/0306065MOKT009



2.2. Design and implementation

The basic content of the catalog is the one-to-many
mapping of the file ID and the PFNs. This mapping
is sufficient for object lookup and navigation. Option-
ally, the file catalog can store logical file names(LFNs).
In contrast to the file ID, which is not easy for the user
to read and to remember, the LFNs may contain hu-
man readable and memorisable strings. LFN can be
seen as the alias of the file ID. One file ID may have
many LFNs. In addition to PFN and LFN, a set of
user defined file metadata can also be associated with
a file ID. Metadata-fileID mapping is one-to-one which
means one file can be associated with one set of well
defined metadata. The purpose of the file metadata
support is to help selecting a fragment of the catalog
when necessary. Figure 1 shows the logical view of
the content of the catalog: the PFN-fileID mapping,
which is essential for the object lookup and optionally,
the LFN-fileID and the metadata-fileID mapping.

File registration and lookup are two fundamental
functionalities of the component. To register a file is
to insert a file ID and PFN pair in the catalog while
to lookup a file is to resolve a file ID into a PFN or
vice versa. Similar functions are provided also for the
file ID and LFN mapping. Besides, one can extract
a subset of files from one concrete catalog and cross
populate them into another catalog. Specific meta-
data can be associated to the file and queries on the
metadata can be used to select the catalog fragments.
In the cross catalog operations the source and the des-
tination catalogs need not to have the same backend
implementation.

The component provides both C++ API and
command-line tools. The C++ API is used by the
storage components in POOL and the experiment
framework to register and lookup a file inside the
application process while command-line tools can be
used outside the application process for catalog man-
agement operations.

Three concrete catalog: XML, MySQL and EDG-
RLS based implementations are provided under sin-
gle abstract interface. Concrete catalogs are loaded
dynamically at run time. To take advantage of the
relational database technology, transactions are sup-
ported by the component. In the transaction the user
can commit or rollback the changes to the catalog.

The three implementations are described in more
detail as follows:

• XML catalog

The XML catalog is useful when the user wants
to run the application disconnected from the
network and the number of entries in the cat-
alog is not too large. Running applications con-
nected to a local XML catalog do not rely on
any central service. The XML catalog can also
be used in data migration. For example, when

one migrates the data in a MySQL backend into
a, say, Oracle backend, the XML catalog can be
used as the intermediate format.

• MySQL catalog

The MySQL catalog is connected to the MySQL
database server. The database based catalog
can handle concurrent accesses and larger data
volume than the XML catalog. The MySQL cat-
alog can be used in larger scale applications such
as in a production farm.

• EDG catalog

A Grid based catalog can be used by the
entire Virtual Organisation (VO). The EDG
project [4] will provide the Replica Management
Service, which controls files that belong to a
VO. In particular, the Replica Location Ser-
vice(RLS) component[5] maintains information
about the physical location of files, while the
Replica Metadata Catalog(RMC) component[6]
provides the information on the logical file
names and metadata. The file catalog compo-
nent in POOL provides an interface to the EDG-
RLS and EDG-RMC. In another word, POOL
applications connected to the EDG catalog are
on the Grid.

The file catalog component provides a Graphic User
Interface for browsing the content of the catalog. A
first prototype of the browser has been developed in
Python scripting language.

2.3. Example use cases

• Read/Write files in POOL applications

When the POOL persistency manager writes in
a file, it requests the ID of the file of given PFN
from the file catalog component. The PFN may
or may not already be registered in the catalog.
If the file is already registered, the file catalog
component returns the file ID to the persistency
manager, otherwise the file catalog component
generates a new file ID, registers it in the catalog
and returns it to the persistency manager.

When the persistency manager opens a file for
reading, it requests the PFN of the file of a given
file ID from the file catalog component. The file
catalog component looks up the PFN in the cat-
alog and returns it to the persistency manager.
If more than one PFNs are found, in the case
of a Grid based catalog, the optimal PFN will
be returned, in an off-the-Grid case, the PFN of
the master copy of the file will be returned.

• Manage a production in a local farm

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint cs.DB/0306065MOKT009



file metadata

jobid, owner, …

LFN 2

LFN 1

LFN n

PFN 1, technology

PFN 2, technology

PFN n, technology

file ID

jobid, owner, …jobid, owner, …

L

Figure 1: Logical view of the catalog

The user extracts a catalog fragment needed by
the job for reading from a central catalog(EDG
or MySQL based) into a local XML catalog.
User runs the job disconnected from the net-
work. During the running of the job, the local
input XML catalog is used when retrieving ob-
jects; the output files are registered into another
local XML catalog. After n job runs, n output
XML catalogs are produced. User cleans the
entries in the catalogs produced by unsuccessful
jobs and publishes the local catalog fragments
to the central catalog making the produced data
files available to a group of users or the entire
production site.

In this setup, when jobs are running they do not
depend on any central services.

2.4. Preliminary performance tests

Performance tests have been set up to compare the
behavior of different catalog implementations.

For the XML catalog, tests were run on a single
Pentium III-1.2GHz computer with about 200MB free
memory. The maximum number of entries have been
tested in a single XML catalog is 50,000. The major
time spent for the XML catalog is on the XML DOM
parser initialization. It takes about 10ms to initialize
a new catalog and about 6s to start a catalog with
20K entries. The PFN registration operation takes
about 0.3 ms/entry on average.

For the MySQL catalog, tests were run on 10 client
nodes and a MySQL server node on the LAN. The
maximum number of entries have been tested in a
single MySQL catalog is 1 million. In the case of 300
concurrent client processes from the 10 client nodes
querying the MySQL server and committing every 100
entries, the PFN registration operation takes about
1.5 ms/entry on average.

Similar tests have been performed against the EDG-
RLS server which is web service on top of rela-
tional database. The PFN registration time is in the
range from about 30ms/entry to 6ms/entry for multi-
threaded applications depending on the combination
and the setup of the web service and the backend
database.

In all tests, a single PFN entry is about 200 char-
acters long and the file ID size is 36 characters.

This is the first performance test of the POOL file
catalog, no systematic performance test and tuning
have been attempted so far.

3. Collection and Metadata component

3.1. Overview

The purpose of the POOL collection component
is to provide the tools needed to manage potentially
large ensembles of objects stored by means of POOL’s
persistence services. The collection component pro-
vides the infrastructure to support definition, cre-
ation, population, and use of such ensembles, includ-
ing query, selection, and iteration services, and higher-
level utilities. Collections provide an entry point for
physicists, a locus for recording the navigational in-
formation necessary to allow later iteration through a
list of data objects that may be physically dispersed
across a very large persistent store. A collection of
events that are of interest to a particular physics work-
ing group because they share certain physics charac-
teristics is a motivating example.

To support selection of specific subsets of interest
from very large collections, it is useful to provide a
means to query attributes of those objects without
retrieving the objects themselves. The metadata com-
ponent in POOL provides the machinery to define and
manage object- and collection-level metadata.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint cs.DB/0306065MOKT009



Named collections populated by explicit calls to in-
sertion operators are called “explicit collections” in
POOL. POOL also supports “implicit collections”–
collections of objects grouped by physical contain-
ment. The set of all objects of type T in a given
container or file is an example of an implicit collec-
tion. An object persistified by writing its state into
a file is implicitly an element of the collection of all
such objects in the file, but the same object may also
be registered in one or more explicit collections.

Explicit and implicit collections are read via the
same abstract interface, so client code does not in any
way depend upon whether an input collection is ex-
plicit or implicit.

The first implementation of explicit collections is
in MySQL. The intent is to allow the possibility
of server-side selection of objects of interest from
queryable collections by means of database-provided
SQL services, so that the list of qualifying objects,
and, by extension, the list of data files needed, may be
determined at a stage prior to job scheduling and grid
resource brokering, without the need to first retrieve
the data files and navigate into application-specific
data.

POOL also supports hierarchical collections, tree-
like structures that accept other (sub)collections as
their elements. The design allows complex selection
based upon both collection- and object-level meta-
data.

3.2. Example use cases

• Create/Write explicit collections

User first defines the attribute lists of collec-
tions will be produced by the process. Then
she processes the event and gathers attribute
data. For each event, the attribute data and
a reference, which contains enough information
to retrieve the persistent object, is added to the
corresponding collection. At the end of process,
several collections with different names are cre-
ated and persisted.

• Read explicit collections

During analysis, the user specifies a number
of collections and provides a query to select
only the objects of interest. Then she iter-
ates through the returned persistent object ref-
erences, retrieve the objects and process them
in the analysis.

4. Summary

File catalog, Collection and Metadata components
are part of the so-called relational layer of the hybrid
event store POOL. Such a relational layer takes ad-
vantage of the underlying relational database technol-
ogy, e.g. the transaction, concurrency and queries, to
achieve efficient management of files and object meta-
data.

The file catalog is one of the basic components
which provide transparent object navigation in the
event store. The design of the component can ac-
commodate wide ranges of use cases. It is grid-aware
but also preserves grid-decoupled modes.

The collection and metadata components provide
physicists with higher level access to and efficient se-
lection on the experiment data in the event store.

References

[1] D. Düllmann et al., these proceedings MOKT007,
and http://pool.cern.ch

[2] R. Brun and F. Rademakers, Nucl. Inst. Meth. A
389 (1997) 81, and http://root.cern.ch

[3] D. Düllmann et al., these proceedings MOKT008,
and physics/0306084.

[4] http://edg-wp2.web.cern.ch/edg-wp2/
[5] http://proj-grid-data-build.web.cern.ch/

proj-grid-data-build/edg-rls-server/
user-guide/html/

[6] http://proj-grid-data-build.web.cern.ch/
proj-grid-data-build/edg-metadata-catalog/
user-guide/html/

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint cs.DB/0306065MOKT009


