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The POOL data storage mechanism is intended to satisfy the needs of the LHC experiments to store and analyze the data from the 
detector response of particle collisions at the LHC proton-proton collider. Both the data rate and the data volumes will largely differ 
from the past experience. The POOL data storage mechanism is intended to be able to cope with the experiment’s requirements applying 
a flexible multi technology data persistency mechanism. The developed technology independent approach is flexible enough to adopt 
new technologies, take advantage of existing schema evolution mechanisms and allows users to access data in a technology independent 
way. The framework consists of several components, which can be individually adopted and integrated into existing experiment 
frameworks. 

 
 

1. INTRODUCTION 

The goal of the POOL project is to be able to store various 
types of data, which can be categorized according to their 
nature and role during data processing activities at the LHC 
experiments being prepared at the LHC collider at CERN 
[1]. The POOL data storage and data access mechanism is 
part of the POOL data persistency framework [2] and allows 
physicists of the LHC experiments to share the data 
produced by particle collisions at the collider experiments 
and later refined and reprocessed in worldwide distributed 
computing facilities. One of the most important design 
features of an experiment software framework is the way 
data persistency issues are handled. The reasons for the 
approach taken in POOL are described in the following 
sections. 

2. A TECHNOLOGY NEUTRAL SOLUTION 

Persistency support means storage and retrieval of objects 
currently defined in C++ across process boundaries. This 
support ideally is realized without intrusion into 
experiments’ current event models, and without requiring 
run-time or link-time dependence between those models and 
the experiment’s persistency technology choices.  

These considerations have led us to conclude that our 
software architecture should support in a transparent way the 
use of different persistency solutions for managing the 
various types of data that must be treated in our data 
processing applications. First the volumes for the different 
data categories vary by many orders of magnitude. The 
event data representing the detector response from particle 
collisions from the different processing stages (raw data, 
reconstructed data and summary data) account for several 
PB/year. Data describing the state of the detector while 
recoding the events typically demand some TB/year. Other 
small amounts of data such as configuration and 
bookkeeping data will require only several GB per year.  

Second, the different access patterns are typical for these 
different data stores e.g. write-once, read-many for event 
data, read and write many for other data, sequential access, 
random access, etc.  

For these reasons we believe that a single persistency 
technology may not be optimal in all cases.  

The POOL software architecture has been designed such 
that the best-adapted technology can be used transparently 
for each category of data. Data are solely accessed through 
the transient data cache, which exposes all required 
functionality to store and retrieve data. To manage the huge 
amount of event data, in addition to simple storage and 
retrieval, placement control to steer the physical data 
clustering is possible. 

This approach, partially inspired by the work of other 
experiments [3,4] will allow evolving smoothly with time to 
more appropriate solutions as they appear in the future. 

In the following the data cache mechanism, the data 
conversion and storage mechanism of the POOL persistency 
framework are described. 

2.1. The Transient Data Cache 

The goal of the POOL architecture is to impose as few 
restrictions as possible on the object to be made persistent 
such as common base classes etc. A physics algorithm can 
deposit objects into the transient data cache, which should be 
made persistent. The data cache is managed by a dedicated 
service, the data service. 

Data services may exist in several instances e.g. 
depending on the nature and the lifetime of the objects each 
service manages. These groups of objects may be handled 
differently e.g. by applying an experiment policy: 
• Event data, which get flushed after the processing of 

one single event 
• Detector data and calibration data 
• Statistical data, such as histograms. 

The main programmatic interface to the data service is 
implemented using a smart pointer approach through so-
called object references. Figure 1 shows how clients can 
access the different data services using this reference 
mechanism. The references also ensure type save data 
access.  

Any object in the persistent world is identified by a token. 
This token describes the location the object in its persistent 
state. The token also allows distinguishing the object type in 
a platform independent manner. For the data-cache-service 
both representations, the transient object and the token are 
equivalent: the presence of a token allows to load the object 
from the persistent storage as illustrated in Figure 2, and on 
the other hand registering an object for persistency results in 
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a token, which in turn can be used to uniquely identify and 
load the object. This identity can also be used to persist 
object relationships. 

Each entry in the transient data cache may contain data 
members, which are primitives, aggregated objects or object 
associations to other objects. Object associations have been 
implemented using reference links in which the node does 
not acquire ownership of the referenced item. The ownership 
of any object belongs to the data cache, which through 
reference counting determines whether an object is still 
accessed by clients or can be dropped.  

 

 

 
Attention was given to the design of the data service in 

order to keep it as an independent component, which can 
easily be replaced by existing cache components of the data 
processing frameworks in various experiments [5,6]. Hence, 
although the data service knows about the existence of 
tokens, it does not interprete the token, but only passes the 
token to the data conversion mechanism. The data content of 
a token is explained in section 2.3. 

2.2. The Data Conversion Mechanism 

There are several options for maintaining both data 
representations. One is to describe the user-data types within 
the persistent storage framework (meta-data) and have 
utilities able to automatically create both representations 
using this meta-data. This approach is elegant under the 
assumption that the physical object layout does not change 
between different platforms, compilers etc. 

Another possibility is to use generated code in order to 
describe the layout of the transient object, and this is the 
approach chosen in POOL. A technology free description of 
the transient object layout was used to access the object's 
data binding. This component, the Data Dictionary [7] was 
used to program the persistent backend with the internal 
layout of the object data. 

In the event that the persistent backend allows describing 
objects as in ROOT I/O [8] (see Figure 3), this mechanism 
can benefit from such features. Using this technique we do 
not only benefit from the ROOT schema evolution 
mechanism, but also when analyzing data interactively 
because the nature of the objects is preserved. 

Non-trivial gateways, which typically do have the 
flexibility of describing objects, depend strongly on the 
persistent technology. It will hence in the future be 
necessary to implement such gateways also for other 
technologies. On the other hand, simple gateways, which for 
example only map tabular data to homomorphous objects, 
can be implemented generically. 

 

 
Attention was given to allow the persistent and the 

transient representation of a given object to be identical. 
This approach avoids the necessity to reformat objects 
before clients can deliver them. In the event a non-standard 
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Figure 1: Clients access data through references. 
The references interact with the data service. 
Each data service manages a data cache. 
Depending on the requirements of the data cache, 
a data service may manage objects according e.g. 
to their lifetime. 
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Figure 2: De-referencing the internal data of a 
reference leads to a valid transient object 
reference 
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Figure 3: The dictionary generation mechanism 
for ROOT based object I/O. The creation of the 
persistent dictionaries is possible using the ROOT 
preprocessor (rootcint), gcc-xml, a preprocessor 
based on the GNU C++ compiler or through 
external code generators. The resulting compiled 
dictionary allows instructing ROOT with the 
persistent object layout. 
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transformation of the persistent data is required to retrieve a 
given transient shape of an object, a transformation callback 
can perform these complicated operations, such as the 
combination of many small transient objects into a single 
object in order to minimize overhead in storage space and 
I/O. When converted to the transient representation, the 
persistent representation is expanded to the individual 
objects.  

Another example is the regrouping of information spread 
over several persistent items into a new object. Such 
flexibility however requires specifically written code.  

 

 
 
Every request for an object from the data service invokes 

the sequence shown in Figure 4: 
1. The client initiates a request to access an object. 
2. The data service searches the data store for the 

requested object. If the object exis ts, a reference is 
returned and the sequence ends. Any object 
requested is identified by its token. 

3. Otherwise the request is forwarded to the 
persistency service. The persistency service 
dispatches the request to the appropriate conversion 
service capable of handling the specified storage 
technology. 

4. The functionality of the conversion service is split 
in two, where a generic conversion service handles 
all technology independent aspects, whereas a 
technology specific component, the storage service 
handles the aspects, which differ between 
technologies. 
o Tokens only specify a given database by its file 

identifier (FID). In a first step, the conversion 

service retrieve from the file catalog 
component [9] the path to the corresponding 
physical file name. The catalog component 
however is not limited to only perform the 
lookup, but could also invoke more complex 
actions like file replications etc. 

o The conversion service determines the 
transformation from the persistent object      to 
the requested transient object. By default this 
transformation is trivial and the persistent 
object shape is identical to the transient object 
shape delivered to the client. 

o The storage service instructs the persistent 
technology about the desired object shape and 
retrieves the object. At this stage the 
underlying storage technology and the object 
description derived from the dictionary 
interact. 

5. Before the client may use the object, any token 
representing a reference from the currently loaded 
object to other objects must be registered with the 
data cache to allow loading these objects on 
demand.  

 

 
When making objects persistent, the calling sequence is as 

follows (see Figure 5): 
1. The client starts a data transaction. A transaction is 

limited to the context of one logical database. 
Several transactions may be open at any time as 
long as they do not refer to the same database. 

2. The client declares iteratively one or several object 
to be marked for migration to the persistent storage. 
On every request a placeholder for the persistent 
object is allocated. The operation returns a unique 
object token, which identifies the object. The total 
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Figure 4: Action sequence for loading an object 
from the persistent medium. 
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Figure 5: The different steps when saving objects 
to the persistent medium. Only when the 
transaction is committed, the data are fully 
migrated to the persistent medium. 
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amount of objects, which can be marked for write, 
depends solely on the available memory. 

3. The client commits the transaction. 
4. When the transaction is committed, all marked 

objects, which still reside in the data cache, are 
migrated to the persistent medium. During this 
process, all references in a migrating object are       
converted to tokens and stored as well. 

2.3. A Generic Persistency Model 

Traditionally HEP data was accessed through sequential 
files. The file was organized in logical records representing 
one event was partitioned into structures called banks.  

The drawback of this sequential file organization is the 
difficulty to access banks from previous processing steps, 
and for example to re-run a reconstruction algorithm while 
analyzing event summary data. Such a behavior however 
does not result from the use of files, but rather from the 
inability of existing persistency mechanisms to address 
individual data items within other files and to read them 
without scanning the file. 

ROOT I/O, relational (RDBMS) and object database 
(ODBMS) technologies allow this type of random access. 
Storing primitive properties of an object with these 
technologies is simple, but it is difficult to store references to 
other objects, as these pointers are only valid in the current 
address space and need special care. 

Commercial databases solve this problem by replacing the 
reference with an object identifier (OID), which allows the 
database engine to locate the persistent representation of the 
object. In addition, the ODBMS engine manages the 
dynamic behavior (methods, polymorphism, inheritance) of 
the objects delivered to the user by setting up the proper 
function table. Unfortunately when using existing 
implementations, this mechanism is implementation specific, 
and does not allow reference to objects outside the current 
database engine. 

To overcome such limitations a generic persistent model 
was developed to allow the following actions: 
• Select the correct storage engine to access the object 

with its desired shape. 
• Locate the object on the persistent storage medium. 
• Read the object data and the object references. 
• Handle the object's dynamic behavior by setting up the 

proper virtual function table through the invocation of 
the constructor. 

Our design assumes that most database technologies are 
based on files or logical files.  Internally these files are 
partitioned into containers ("Root trees" or "Root 
directories" for ROOT I/O, tables in relational database 
technologies) and objects populating these containers (see 
Figure 6). Objects within a container are addressed using a 
record identifier. 

Using these back-end persistency technologies, a generic 
token was designed, which supports the above functionality. 
The database technology identifier, the object type, the 
database file, the container/table and the object identifier 

within the container form a universal object address, which 
allo ws data items to be addressed in nearly any known 
technology. This information is stored in the token, which 
fully identifies an object and forms a relocatable object 
address.  

The full data content of such a token can be relocated 
between processes and individual users e.g. to communicate 
the identity of a physics event by electronic mail. Since the 
token fully identifies the object within any persistent 
medium, the token is equivalent to the object itself and 
hence allows to easily load objects on demand using a smart 
pointer mechanism. One implementation of such a 
mechanism is the POOL data cache as described in section 
2.1. 

To store relationships between objects in a logical 
database, this address is split, to minimize persistent storage 
overhead. As illustrated in Table 1 for various technology 
choices, the object type, database technology, the database 
name, the container name are stored in a separate lookup 
table, identified by a primary key, the link identifier. Hence, 
a persistent reference only contains the key to this look-up 
table and the record id of the object in the corresponding 
container. An instance of this look-up table is stored in every 
logical database and allows resolving all references from 
objects within the same logical database to any other object 
in- or outside this database. 
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Figure 6: The generic database model. The storage 
service manages one technology, where data are 
partitioned into logical databases. A database has 
containers, which themselves host the individual 
objects. 
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This local object resolution approach ensures, that data 

within individual logical databases are self-consistent. The 
local uniqueness of the objects is extended to global 
uniqueness by granting a unique naming of the individual 
database identifiers and typical problems of commercial 
solutions, trying to define object uniqueness at the level of 
small object identifiers is circumvented. The database 
identifiers are uniquely represented by a GUID, where a 
GUID can be transformed into the physical file name using 
the file catalog component. 

When writing, this look-up table is automatically updated 
whenever a new link that is to be made persistent occurs in 
the object model. 

If the token represents an object in an object database, an 
object association can be directly represented by the duple 
consisting of the record identifier and the object identifier. 
Using such a shortcut, the additional lookup in the 
indirection table may be omitted. Otherwise all information 
required locating the database file, the container/table and 
the corresponding record must be determined using a 
lookup. 

3. EXPERIENCE WITH VARIOUS 
PERSISTENCY SOLUTIONS 

The model described above has been implemented for 
several back-end technologies. In ATLAS, CMS and LHCb 
the POOL data storage mechanism using ROOT I/O as a 
backend solution is currently the preferred solution to write 
event data. Another implementation for a persistent backend 
implementation using relation database technology is under 
development.  

The system has been tested so far on a rather small scale 
and performs well. A detailed analysis of the additional cost 
with respect to CPU and persistent storage is planned the 
before the deployment on a larger scale and the integration 
into the experiment frameworks. The additional overhead to 
implement the object reference mechanism is with eight 
Bytes per association rather small. 
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Technology Type ROOT-Keyed ROOT-Tree RDMS ORACLE 

File / Database identifier ROOT File name ROOT File name Database name User login/table space 

Container Identifier Directory Tree/Branch Table name Table/View name 

Object identifier Unique key Record Number Primary Key Primary Key 

Table 1 Layout of the universal container address in the link table. The role of the database name and the 
container name depends on the persistent technology. 
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