

The POOL Data Storage, Cache and Conversion Mechanism
D. Düllmann, M. Frank, G. Govi, I. Papadopoulos, S. Roiser
European Laboratory for Particle Physics (CERN), Genève, Switzerland

The POOL data storage mechanism is intended to satisfy the needs of the LHC experiments to store and analyze the data from the
detector response of particle collisions at the LHC proton-proton collider. Both the data rate and the data volumes will largely differ
from the past experience. The POOL data storage mechanism is intended to be able to cope with the experiment’s requirements applying
a flexible multi technology data persistency mechanism. The developed technology independent approach is flexible enough to adopt
new technologies, take advantage of existing schema evolution mechanisms and allows users to access data in a technology independent
way. The framework consists of several components, which can be individually adopted and integrated into existing experiment
frameworks.

1. INTRODUCTION

The goal of the POOL project is to be able to store various
types of data, which can be categorized according to their
nature and role during data processing activities at the LHC
experiments being prepared at the LHC collider at CERN
[1]. The POOL data storage and data access mechanism is
part of the POOL data persistency framework [2] and allows
physicists of the LHC experiments to share the data
produced by particle collisions at the collider experiments
and later refined and reprocessed in worldwide distributed
computing facilities. One of the most important design
features of an experiment software framework is the way
data persistency issues are handled. The reasons for the
approach taken in POOL are described in the following
sections.

2. A TECHNOLOGY NEUTRAL SOLUTION

Persistency support means storage and retrieval of objects
currently defined in C++ across process boundaries. This
support ideally is realized without intrusion into
experiments’ current event models, and without requiring
run-time or link-time dependence between those models and
the experiment’s persistency technology choices.

These considerations have led us to conclude that our
software architecture should support in a transparent way the
use of different persistency solutions for managing the
various types of data that must be treated in our data
processing applications. First the volumes for the different
data categories vary by many orders of magnitude. The
event data representing the detector response from particle
collisions from the different processing stages (raw data,
reconstructed data and summary data) account for several
PB/year. Data describing the state of the detector while
recoding the events typically demand some TB/year. Other
small amounts of data such as configuration and
bookkeeping data will require only several GB per year.

Second, the different access patterns are typical for these
different data stores e.g. write-once, read-many for event
data, read and write many for other data, sequential access,
random access, etc.

For these reasons we believe that a single persistency
technology may not be optimal in all cases.

The POOL software architecture has been designed such
that the best-adapted technology can be used transparently
for each category of data. Data are solely accessed through
the transient data cache, which exposes all required
functionality to store and retrieve data. To manage the huge
amount of event data, in addition to simple storage and
retrieval, placement control to steer the physical data
clustering is possible.

This approach, partially inspired by the work of other
experiments [3,4] will allow evolving smoothly with time to
more appropriate solutions as they appear in the future.

In the following the data cache mechanism, the data
conversion and storage mechanism of the POOL persistency
framework are described.

2.1. The Transient Data Cache

The goal of the POOL architecture is to impose as few
restrictions as possible on the object to be made persistent
such as common base classes etc. A physics algorithm can
deposit objects into the transient data cache, which should be
made persistent. The data cache is managed by a dedicated
service, the data service.

Data services may exist in several instances e.g.
depending on the nature and the lifetime of the objects each
service manages. These groups of objects may be handled
differently e.g. by applying an experiment policy:
• Event data, which get flushed after the processing of

one single event
• Detector data and calibration data
• Statistical data, such as histograms.

The main programmatic interface to the data service is
implemented using a smart pointer approach through so-
called object references. Figure 1 shows how clients can
access the different data services using this reference
mechanism. The references also ensure type save data
access.

Any object in the persistent world is identified by a token.
This token describes the location the object in its persistent
state. The token also allows distinguishing the object type in
a platform independent manner. For the data-cache-service
both representations, the transient object and the token are
equivalent: the presence of a token allows to load the object
from the persistent storage as illustrated in Figure 2, and on
the other hand registering an object for persistency results in

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint physics/0306084MOKT008

a token, which in turn can be used to uniquely identify and
load the object. This identity can also be used to persist
object relationships.

Each entry in the transient data cache may contain data
members, which are primitives, aggregated objects or object
associations to other objects. Object associations have been
implemented using reference links in which the node does
not acquire ownership of the referenced item. The ownership
of any object belongs to the data cache, which through
reference counting determines whether an object is still
accessed by clients or can be dropped.

Attention was given to the design of the data service in

order to keep it as an independent component, which can
easily be replaced by existing cache components of the data
processing frameworks in various experiments [5,6]. Hence,
although the data service knows about the existence of
tokens, it does not interprete the token, but only passes the
token to the data conversion mechanism. The data content of
a token is explained in section 2.3.

2.2. The Data Conversion Mechanism

There are several options for maintaining both data
representations. One is to describe the user-data types within
the persistent storage framework (meta-data) and have
utilities able to automatically create both representations
using this meta-data. This approach is elegant under the
assumption that the physical object layout does not change
between different platforms, compilers etc.

Another possibility is to use generated code in order to
describe the layout of the transient object, and this is the
approach chosen in POOL. A technology free description of
the transient object layout was used to access the object's
data binding. This component, the Data Dictionary [7] was
used to program the persistent backend with the internal
layout of the object data.

In the event that the persistent backend allows describing
objects as in ROOT I/O [8] (see Figure 3), this mechanism
can benefit from such features. Using this technique we do
not only benefit from the ROOT schema evolution
mechanism, but also when analyzing data interactively
because the nature of the objects is preserved.

Non-trivial gateways, which typically do have the
flexibility of describing objects, depend strongly on the
persistent technology. It will hence in the future be
necessary to implement such gateways also for other
technologies. On the other hand, simple gateways, which for
example only map tabular data to homomorphous objects,
can be implemented generically.

Attention was given to allow the persistent and the

transient representation of a given object to be identical.
This approach avoids the necessity to reformat objects
before clients can deliver them. In the event a non-standard

Event Data CacheEvent Data Cache

Data ServiceData Service

Event Data CacheEvent Data Cache

Data ServiceData Service

Event Data CacheEvent Data Cache

Data ServiceData Service

Event Data CacheEvent Data Cache

Data ServiceData Service

ClientClientClientClientClientClientClientClientClient
ClientClientClientClientClientClientClientClientClient Ref<T>Ref<T>Ref<T>

Detector Data CacheDetector Data Cache

Data ServiceData ServiceRef<T>Ref<T>Ref<T>Ref<T>Ref<T>Ref<T>

Detector Data CacheDetector Data Cache

Data ServiceData Service

Detector Data CacheDetector Data Cache

Data ServiceData Service

Ref<T>Ref<T>Ref<T>
Object CacheObject Cache

Data ServiceData ServiceRef<T>Ref<T>Ref<T>
Object CacheObject Cache

Data ServiceData Service

Ref<T>Ref<T>Ref<T>Ref<T>Ref<T>Ref<T>

Figure 1: Clients access data through references.
The references interact with the data service.
Each data service manages a data cache.
Depending on the requirements of the data cache,
a data service may manage objects according e.g.
to their lifetime.

Object Reference in Cache ManagerObject Reference in Cache Manager

Reference to Cache ManagerReference to Cache Manager

Ref<T>Ref<T>Ref<T>

Pointer to objectPointer to object

Dereference

Object Reference in Cache ManagerObject Reference in Cache Manager

Reference to Cache ManagerReference to Cache Manager

Ref<T>Ref<T>Ref<T>

Pointer to objectPointer to object

Dereference

Figure 2: De-referencing the internal data of a
reference leads to a valid transient object
reference

.h.h

ROOTCINTROOTCINT

CINT dictionary codeCINT dictionary code

Dictionary
Generation

C
IN

T

d
ic

ti
o

n
ar

y
C

IN
T

di
ct

io
na

ry

I/OI/OI/OI/O

Data I/O

GCC-XMLGCC-XML

LCG dictionary codeLCG dictionary code

.xml.xml

Code GeneratorCode Generator

LC
G

d
ic

ti
o

n
ar

y
L

C
G

d
ic

ti
o

n
ar

y

G
at

ew
ay

G
at

ew
ay

Reflection
O

th
er

 C
lie

nt
s

O
th

er
 C

lie
nt

s

Figure 3: The dictionary generation mechanism
for ROOT based object I/O. The creation of the
persistent dictionaries is possible using the ROOT
preprocessor (rootcint), gcc-xml, a preprocessor
based on the GNU C++ compiler or through
external code generators. The resulting compiled
dictionary allows instructing ROOT with the
persistent object layout.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint physics/0306084MOKT008

transformation of the persistent data is required to retrieve a
given transient shape of an object, a transformation callback
can perform these complicated operations, such as the
combination of many small transient objects into a single
object in order to minimize overhead in storage space and
I/O. When converted to the transient representation, the
persistent representation is expanded to the individual
objects.

Another example is the regrouping of information spread
over several persistent items into a new object. Such
flexibility however requires specifically written code.

Every request for an object from the data service invokes

the sequence shown in Figure 4:
1. The client initiates a request to access an object.
2. The data service searches the data store for the

requested object. If the object exis ts, a reference is
returned and the sequence ends. Any object
requested is identified by its token.

3. Otherwise the request is forwarded to the
persistency service. The persistency service
dispatches the request to the appropriate conversion
service capable of handling the specified storage
technology.

4. The functionality of the conversion service is split
in two, where a generic conversion service handles
all technology independent aspects, whereas a
technology specific component, the storage service
handles the aspects, which differ between
technologies.
o Tokens only specify a given database by its file

identifier (FID). In a first step, the conversion

service retrieve from the file catalog
component [9] the path to the corresponding
physical file name. The catalog component
however is not limited to only perform the
lookup, but could also invoke more complex
actions like file replications etc.

o The conversion service determines the
transformation from the persistent object to
the requested transient object. By default this
transformation is trivial and the persistent
object shape is identical to the transient object
shape delivered to the client.

o The storage service instructs the persistent
technology about the desired object shape and
retrieves the object. At this stage the
underlying storage technology and the object
description derived from the dictionary
interact.

5. Before the client may use the object, any token
representing a reference from the currently loaded
object to other objects must be registered with the
data cache to allow loading these objects on
demand.

When making objects persistent, the calling sequence is as

follows (see Figure 5):
1. The client starts a data transaction. A transaction is

limited to the context of one logical database.
Several transactions may be open at any time as
long as they do not refer to the same database.

2. The client declares iteratively one or several object
to be marked for migration to the persistent storage.
On every request a placeholder for the persistent
object is allocated. The operation returns a unique
object token, which identifies the object. The total

(5) Register
-Object
-References

(2) Look-up

Data CacheData Cache

(3) Load request

Persistency
Service

Persistency
ServiceData ServiceData Service

ClientClientClient

(1) Read request

R
ef

<
T

>
R

ef
<

T
>

R
ef

<
T

>

Storage
Service
Storage
Service
Storage
Service
Storage
Service

Conversion
Service

Conversion
Service

(4) Load object

Figure 4: Action sequence for loading an object
from the persistent medium.

Storage
Service
Storage
Service

Ref<T>. mark for writeRef<T>. mark for writeRef<T>. mark for write

Start TransactionStart TransactionStart Transaction

Commit TransactionCommit TransactionCommit Transaction

Persistency
Service

Persistency
Service

Object CacheObject Cache

C
lie

n
t

C
lie

n
t

C
lie

n
t

D
at

a
S

er
vi

ce
D

at
a

S
er

vi
ce

D
at

a
S

er
vi

ce
Conversion

Service
Conversion

Service

(1)

(2)

(3)

(4)

Figure 5: The different steps when saving objects
to the persistent medium. Only when the
transaction is committed, the data are fully
migrated to the persistent medium.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint physics/0306084MOKT008

amount of objects, which can be marked for write,
depends solely on the available memory.

3. The client commits the transaction.
4. When the transaction is committed, all marked

objects, which still reside in the data cache, are
migrated to the persistent medium. During this
process, all references in a migrating object are
converted to tokens and stored as well.

2.3. A Generic Persistency Model

Traditionally HEP data was accessed through sequential
files. The file was organized in logical records representing
one event was partitioned into structures called banks.

The drawback of this sequential file organization is the
difficulty to access banks from previous processing steps,
and for example to re-run a reconstruction algorithm while
analyzing event summary data. Such a behavior however
does not result from the use of files, but rather from the
inability of existing persistency mechanisms to address
individual data items within other files and to read them
without scanning the file.

ROOT I/O, relational (RDBMS) and object database
(ODBMS) technologies allow this type of random access.
Storing primitive properties of an object with these
technologies is simple, but it is difficult to store references to
other objects, as these pointers are only valid in the current
address space and need special care.

Commercial databases solve this problem by replacing the
reference with an object identifier (OID), which allows the
database engine to locate the persistent representation of the
object. In addition, the ODBMS engine manages the
dynamic behavior (methods, polymorphism, inheritance) of
the objects delivered to the user by setting up the proper
function table. Unfortunately when using existing
implementations, this mechanism is implementation specific,
and does not allow reference to objects outside the current
database engine.

To overcome such limitations a generic persistent model
was developed to allow the following actions:
• Select the correct storage engine to access the object

with its desired shape.
• Locate the object on the persistent storage medium.
• Read the object data and the object references.
• Handle the object's dynamic behavior by setting up the

proper virtual function table through the invocation of
the constructor.

Our design assumes that most database technologies are
based on files or logical files. Internally these files are
partitioned into containers ("Root trees" or "Root
directories" for ROOT I/O, tables in relational database
technologies) and objects populating these containers (see
Figure 6). Objects within a container are addressed using a
record identifier.

Using these back-end persistency technologies, a generic
token was designed, which supports the above functionality.
The database technology identifier, the object type, the
database file, the container/table and the object identifier

within the container form a universal object address, which
allo ws data items to be addressed in nearly any known
technology. This information is stored in the token, which
fully identifies an object and forms a relocatable object
address.

The full data content of such a token can be relocated
between processes and individual users e.g. to communicate
the identity of a physics event by electronic mail. Since the
token fully identifies the object within any persistent
medium, the token is equivalent to the object itself and
hence allows to easily load objects on demand using a smart
pointer mechanism. One implementation of such a
mechanism is the POOL data cache as described in section
2.1.

To store relationships between objects in a logical
database, this address is split, to minimize persistent storage
overhead. As illustrated in Table 1 for various technology
choices, the object type, database technology, the database
name, the container name are stored in a separate lookup
table, identified by a primary key, the link identifier. Hence,
a persistent reference only contains the key to this look-up
table and the record id of the object in the corresponding
container. An instance of this look-up table is stored in every
logical database and allows resolving all references from
objects within the same logical database to any other object
in- or outside this database.

databasedatabasedatabasedatabaseDatabaseDatabase

Disk
StoragedatabasedatabasedatabasedatabaseDatabaseDatabase

databasedatabasedatabasedatabaseDatabaseDatabase

Disk
Storage

ContainerContainerContainerContainerContainerContainer

ObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjects

Data Cache
•Object type (class name)
•Optional data transform

StorageSvcStorageSvc

Figure 6: The generic database model. The storage
service manages one technology, where data are
partitioned into logical databases. A database has
containers, which themselves host the individual
objects.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint physics/0306084MOKT008

This local object resolution approach ensures, that data

within individual logical databases are self-consistent. The
local uniqueness of the objects is extended to global
uniqueness by granting a unique naming of the individual
database identifiers and typical problems of commercial
solutions, trying to define object uniqueness at the level of
small object identifiers is circumvented. The database
identifiers are uniquely represented by a GUID, where a
GUID can be transformed into the physical file name using
the file catalog component.

When writing, this look-up table is automatically updated
whenever a new link that is to be made persistent occurs in
the object model.

If the token represents an object in an object database, an
object association can be directly represented by the duple
consisting of the record identifier and the object identifier.
Using such a shortcut, the additional lookup in the
indirection table may be omitted. Otherwise all information
required locating the database file, the container/table and
the corresponding record must be determined using a
lookup.

3. EXPERIENCE WITH VARIOUS
PERSISTENCY SOLUTIONS

The model described above has been implemented for
several back-end technologies. In ATLAS, CMS and LHCb
the POOL data storage mechanism using ROOT I/O as a
backend solution is currently the preferred solution to write
event data. Another implementation for a persistent backend
implementation using relation database technology is under
development.

The system has been tested so far on a rather small scale
and performs well. A detailed analysis of the additional cost
with respect to CPU and persistent storage is planned the
before the deployment on a larger scale and the integration
into the experiment frameworks. The additional overhead to
implement the object reference mechanism is with eight
Bytes per association rather small.

References

[1] LHC – The Large Hadron Collider,
 http://www.cern.ch/lhc
[2] D. Duellmann et al., POOL Project Overview,
 CHEP 2003 proceeding, MOKT007
 see also: http://pool.cern.ch
[3] S.Gowdy et al., Hiding Persistency when using the
 BaBar Database, CHEP 1998, Proceedings.
[4] M.Frank et al., A Persistency Solution for LHCb,
 CHEP2000 proceedings, p.431-435,
 Padova, Feb. 2000.
[5] G. Barrand et al., GAUDI: A Software Architecture
 and Framework for building HEP Data Processing
 Applications, CHEP 2000 proceedings,
 Padova, Feb. 2000
[6] P.Calafiura et al., The StoreGate: A Data Model for the
 Atlas Software Architecture,
 CHEP 2003 proceeding, MOJT008
[7] J. Generowicz et al., SEAL: Common Core Libraries
 and Services for LHC Applications,
 CHEP 2003 proceedings, MOJT003.
 see also: http://seal.cern.ch
[8] R.Brun and F.Rademakers,
 ROOT-An Object Oriented Data Analysis Framework,
 Nucl. Inst.&Meth. in Phys.Res.A389(1997)81-86.
 see also: http://root.cern.ch
[9] Z.Xie at al., POOL File Catalog, Collection and Meta
 Data Components,
 CHEP 2003, proceeding, MOKT009
 see also: http://lcgapp.cern.ch/project/persist/

Technology Type ROOT-Keyed ROOT-Tree RDMS ORACLE

File / Database identifier ROOT File name ROOT File name Database name User login/table space

Container Identifier Directory Tree/Branch Table name Table/View name

Object identifier Unique key Record Number Primary Key Primary Key

Table 1 Layout of the universal container address in the link table. The role of the database name and the
container name depends on the persistent technology.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint physics/0306084MOKT008

