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The POOL project has been created to implementnamem persistency framework for the LHC Computingd@tCG)
application area. POOL is tasked to store experirdata and meta data in the multi Petabyte areadistributed and grid
enabled way. First production use of new framewierkxpected for summer 2003. The project followsybrid approach
combining C++ Object streaming technology such @OR 1/O for the bulk data with a transactionalljeseelational database
(RDBMS) store such as MySQL. POOL is based a stnatponent approach - as laid down in the LCG prscy and blue
print RTAG documents - providing navigational accés distributed data without exposing detailstad particular storage
technology. This contribution describes the prof@eakdown into work packages, the high level attéon between the main
pool components and summarizes current statusland.p

via ROOT-/O[10] and uses MySQL[11] as an

1. INTRODUCTION implementation for relational database servicesgtieno

) o o link time dependency on the ROOT or MySQL libraries.
Data processing at LHC[1] will impose significant gack end component implementations are instead loaded
challenges on the computing of all LHC experiments. Theg: runtime via the SEAL[5] plug-in infrastructure. The
very large volume of data — some hundred Petabytes ovef,in advantage of this approach is that changes required
the lifetime of the experiments — requires that tradétlo adapt to new back end implementations are largely
approaches, based on explicit file handling by the end.ynained inside the POOL project rather than affeet th
user, be reviewed. Furthermore the long LHC projecty ch jarger code base of the experiment frameworks or
lifetime results in an increased focus on malntalrtablll_ even end user code. Achieving this goal and still keeping
and change management for the experiment computing, o system open for new developments is only possiple b
models and core software such as data handling. It has t@nstraining very consciously the concepts exposed by
be expected that during LHC project lifetime several majo pogl. The project has made a significant effort to
technology changes will take place and experiment dat"?dentify a minimal API that is just sufficient to implemt
handling systems will be required to be able to adaplne gata management requirements but still can be
quickly to the changes in the environment or the physicSmplemented using most implementation technologies

research focus. , , which are available today.
In the context of the LHC Computing Grid (LCG[2]) a

common effort to implement a persistency framework
underlying the different experiment frameworks has been
started in April 2002. The project POOL[3] (acronym for The POOL system is based on a hybrid technology
POOL Of persistentObjects for LHC) has since then approach. POOL combines two main technologies with
ramped up to about 10 FTE from IT/DB group at CERN quite different features into a single consistent ARl an
and the experiments located at CERN and outsidestorage system. The first technology includes so-called
institutes. object streaming packages (eg ROOT 1/0O) which deal with
For POOL as a project, the strong involvement of thepersistency for complex C++ objects such as event data
experiments from the very early stages on is seerergs v components. Often this data is used in a write-oneel-re
important to guarantee that the experiments’ requirementsnany mode and concurrent access to the data can tieerefo
are injected and implemented by the project withoutbe constrained to the simple read-only case. This
introducing too much distance between software providersimplifies in particular the deployment as no central
and users. Many of the POOL developers are part of aservices to implement transaction or locking mechanisms
experiment software team and will be directly involved are required. The second technology class provides
also the integration of POOL into their experiments Relational Database (RDBMS) services such as

1.2. Hybrid Technology Store

software framework. distributed, transactionally consistent, concurrent st
data which still can be updated. RDBMS based stores also
1.1. Component Architecture provide facilities for efficient server side query evaiom

o ) The aim of this hybrid approach is to allow users ¢o b
POOL as a LCG Application Area project follows closely gpe to choose the most suitable storage implementatio
the overall component base architecture laid down én th ¢, gifferent data types, use cases and deployment
LCG Blueprint RTAG report[4]. The aim is to follow 8 enyironments. In particular RDBMS based components
much as possible a technology neutral approach. POOLye cyrrently used heavily in the area of catalogs,

therefore provides a set of service APIs - often virabt  cqjjections and their meta data, streaming technology is
component interfaces - and isolates experiment framework <o for the bulk data.

user code from details of a particular implementation
technology. As a result, the POOL user code is not
dependent on implementation API or header files, POOL
applications do not directly depend on implementation POOL implements a distributed store with full support for
libraries. Even though POOL implements object stregmin navigation between individual data objects. References

1.3. Navigational Access
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between objects are tran arenqu res veg— meaerg%%&eps a r]ls of open %a{a?base connections and issues

referred-to objects are brought into the applicationindividual low level commits on the database level as
memory automatically by POOL as required by the required.
application. References may connect objects in ettieer

same file or spanning file and even technology boundaries.
Physical details such as file names, host names and th POOL Context
technology which holds a particular object are not exgos
to reading user code. These parameters can therefdge eas FileCatalog
be changed which allows optimizing the computing fabric

with minimal impact on existing applications. |

[ Container
2. PROJECT BREAKDOWN INTO WORK L

PACKAGES C Obet

The internal structure of POOL follows closely a domain ) )

decomposition which has been described to a large extend Fig.2 POOL Storage Hierarchy

already in the report of the Persistency RTAG[7] Whic

preceded the POOL project. In this paper we give only aEach POOL database (entry in the POOL file catalog) ha
brief overview on the overall project structure and the@ Wwell defined majostorage technology. Currently only
main responsibilities and collaboration between itsinhm One major technology is supported - namely ROOT 1/O
components. A more detailed description of componentfiles - are supported but the RDBMS storage manager
implementations can be found in [8] and [9]. ComponentPrototype will be a first extension to prove that such
design documents are available at [3]. independence has indeed been achieved.

POOL databases are internally structured into continer
which are used to group persistent objects inside the

POOL API database. POOL containers in the same database may
differ in their minor technology type but not in their jora
torage Service type (eg a single ROOT /O database file may hold
containers of ROOT-tree and ROOT-keyed type).

Some storage service implementations may constrain the
choice of data types which can be kept in a container
simultaneously. For example a ROOT tree based
container does not allow storing arbitrary combiorasi of
unrelated types in the same container, a ROOT directory
based container does.

Sosge sve oo | il e
RDBM Q - nplic
Storage Svc ? Catalog N Collection l

[ Locsion Service g

Fig. 1, POOL breakdown in components

2.2. File Catalog

The main responsibility of the File Catalog is to keegk
2.1. POOL Storage Hierarchy of all POOL databases (usually files which store objects
and to resolve file references into physical filemea
which are then used by lower level components like the
The storage hierarchy exposed by POOL consists oktorage service to access file contents. More regcémel
several layers (shown in Fig. 2) each dealing withemor POOL file catalog has been extended to allow simple meta
granular objects than the one above. The entry poiot i  data to be attached to each file entry. This infrasirads
the system is the POOL context which holds all object shared with the collection implementation.
which have been obtained so far. Each context maywhen working in a Grid environment a File Catalog
reference objects from any entry in a given File @gtal component based on the EDG Replica Location Service
Currently POOL supports a single File Catalog at a time ((RLS) is provided to make POOL applications grid aware.
this may be extended in later releases. By specifyirg th File resolution and catalog meta data queries in this case
file catalog for a particular application one determities  are forwarded to grid middleware requests.
scope of objects this application can see. For grid-disconnected environment MySQL- and XML-
The context is also the granularity of user level based implementations of the component interface exist,
transactions which are provided by POOL. All objentsii  which use a dedicated database server in the local area
context which have been marked for writing will be network (eg isolated production catalog servers) oallo
written together at the context transaction commite T file system files (eg disconnected laptop use cases).
persistency service subcomponent of the storage service
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Files are referref TR INGIHL BB N AUGISR FEY Bt AR 3P5c ka0l WAltiRE an object a unique object

immutable file identifier (FileID) which is assignetifde identifier is defined, which can later be used to loth&e
creation time. This concept of a system generatedDFile object throughout a POOL store.

has been added by POOL to the standard grid model of

many-to-many mapping between logical and physical file

names to provide for stable inter-file reference in an2.4. Object Cache & References

environment were both logical and physical file names . . L

may change after data has been written. The staliDFil ONCe an object has been created in application memory,
allows POOL to maintain referential consistency lsemv ~ €ither by the user to be written out or as a result of a
several files which contain related objects without POOL read operation, the object is maintained in arcobje

requiring any data update eg to fix up changes in logical oc@che (also called Data Service) to speed up repeated
physical file names. accesses to the same object and control object lifetime

In addition the particular FilelD implementation whichs 1 N€ implementation provided with POOL uses a templated

been chosen for POOL which is based on so-calledMart pointer type (pool::Ref<T>) which implements —
Universally or Globally Unique Identifiers close to the ODMG standard - object loading on demand

(UUID/GUID[12]) provides another very interesting and automatic c.ache management via reference counting
benefit. GUID based unique FilelDs can be generated ifP" @l cached object. _

complete isolation without a central allocation sesvi Alternatively an experiment may decide to clean all
This greatly simplifies the distributed deployment of OPicts from the cache via an API explicitly or to el
POOL, as POOL files can be created even withoutthe POOL object cache with its own implementation by
network connection and still later be integrated inuhm providing an implementation of the cache interface ddfine

larger store catalogs without any risk of clashes. in POOL; i
As the inter-object references can be stored para of

persistent object as well, and as POOL will transpbrent
load objects on demand, the ref is also the main bgildin
block to construct persistent associations between objects

Logical Filename 1

FogCTTIename D e Physical Filename These may be local to a single file but also acréssafid
even technology boundaries. Object lifetime management
Logical Filename n Physical Filename and object caching are coupled closely to the user

implementation language — currently C++ for LHC offline
code. This POOL component therefore to a large extend
Fig 3. POOL File Catalog Mapping acts as a C++ bmdmg of POOL and (_enca_psulates most
functional changes which would be required in case native
support additional language should become a requirement.
2.3. Storage Service & Conversio .
g 2.5. Collections

The storage technology information from the File @ata i i
is used to dispatch any read or write operation to aln€ collection support provided by POOL allows

particular storage manager. The task of the storagdn@ntaining large scale object collections (eg event

manager component is to translate (stream) any transie c0/lections) — and should not be confused with the
user object into a persistent storage representaticchvidii  Standard C++ container support which is provided by the

suitable for reconstructing an object in the same daagr. P OOL storage service. POOL collections can be opitiona
The complex task of mapping individual object data extgnded with meta data (currently onIy_ simple lists of
members and the concrete type of the object relieen attnbu@e—value pairs) to support user queries to seIe;zF onl
LCG Object Dictionary component developed by the collection elements which fulfill a query expression.
SEAL project. For each persistent class this dictionaryPOOL ~ supports  several  different  collection
provides detailed information about internal data layoutiMPlémentations based either on the RDBMS back end or
which is then used by the storage service to configere thO" the streaming layer. Collections can be defined
particular backend technology (eg ROOT 1/0) to perform €XPlicitly — via adding each contained objects explicitly —
/O operations. or as s_o-callgd |m_pI|C|t collection which re.fers th a
In addition to the existing storage service which support OPJECts in a given list of databases or containessthe
objects in ROOT trees and objects in ROOT directodes, dlffere_nt collection |mplementat|ons adhere to a camm
prototype implementation of a RDBMS base store is collection component _mterface, the user can easﬂ_y:lsw
underway. As the POOL program interface hides theffom @ collection using ROOT trees in local files to
details of their internal implementation, the user cailyeas database |mplementat|ons wh|ch allows distributed access
adapt to new requirements or technologies with very litt 2nd Server side query evaluation.

change to the application code.
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The POOL internal project structure is closely adign The LCG POOL project provides a new persistency
with the functional decomposition of the system. Threeframework implemented as a hybrid data store. It
work packages have been created to implement théntegrates seamlessly existing streaming technology (e
Storage, File Catalog and Collection component servicelROOT 1/0O) for complex object storage with RDBMS
discussed above. A fourth work package deals with releastechnology (eg MySQL) for consistent meta data handling.
coordination, testing and the overall POOL developmentStrong emphasis has been put on strict component
infrastructure relying on core services provided by thedecoupling and well defined inter component

LCG-SPI[6] project. communication and dependencies.
POOL provides transparent cross-file and cross-
3.1. Release Procedure technology object navigation via C++ smart pointers

. without requiring the user to explicitly open individual
POOL follows the rapid release cycles proposed by thejes or database connections. At the same timevigishe

LCG software process RTAG[13] with the aim 10 ppG.RLS based catalogue integrated with Grid
stimulate early feedback from the participating technology. The component architecture preserves the

experiments. Roughly once every 6 weeks a public releasgqgsipility to choose at runtime between networked and
is produced and announced to the user Comm“n'tygrid-decoupled working modes

Internal releases which are publicly available but witho e recently produced POOL V1.0 release is currently

complete testing, component set and documentation argyegrated in several of the experiment frameworks and is
produced several times a week. As the POOL developergypacted to be first deployed in production activities this

are distributed and - because of the componentization — arg,mmer. Essential for the success will be a tight

usually exposed to a subset of the POOL functionality connection to experiment development and production

only, we organize weekly work package meetings and deams to validate the feature set and tight integratich
bi-weekly full project meeting. Roughly every 2 release | g deployment activities.
cycles we perform an internal code review to increase th
common knowledge about component implementations in References
other project areas.
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At the time of writing the project is finishing POOL http://lcg.web.cern.ch

V1.1 which will add significant functional enhancements E] The POOL Project,
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