

Configuration Database for BaBar On-line
R. Bartoldus, A. Salnikov
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

G. Dubois-Felsmann
Caltech, 1200 E. California Bl., Pasadena, CA 91125, USA

Y. Kolomensky
LBNL, 1 Cyclotron Rd., Berkeley, CA 94720, USA

(On behalf of the BaBar Computing Group)

The configuration database is one of the vital systems in the BaBar on-line system. It provides services for the different parts of the data
acquisition system and control system, which require run-time parameters. The original design and implementation of the configuration
database played a significant role in the successful BaBar operations since the beginning of experiment. Recent additions to the design
of the configuration database provide better means for the management of data and add new tools to simplify main configuration tasks.
We describe the design of the configuration database, its implementation with the Objectivity/DB object-oriented database, and our
experience collect ed during the years of operation.

1. INTRODUCTION

The BaBar on-line system uses a number of the
databases to keep various information relevant to the
data taking [1]. These databases include:

• Conditions database [2], which contains time-
dependent data, such as calibrations,
geometry, etc.

• Ambient database, which keeps a track of the
history of data-taking conditions. This is a
simplified conditions database and it is a part
of the detector control system [3].

• Configuration database, which keeps settings
for the parts of the data acquisition system
(DAQ).

• Prompt Reconstruction databases, which
provide support for multi-node calibration.

This paper describes the design and implementation of
the configuration database. The main purpose of the
configuration database is to provide all participants of
the DAQ system with the data needed to configure them
prior to data taking.

2. CONFIGURATION DATABASE DESIGN

2.1. Requirements

The main requirements for the configuration database
are the following:

1. Provide a support for configuration of the on-
line software and hardware when data taking
starts.

2. Be able to reconstruct the exact configuration
used for in any run taken in the past.

3. Support both standard data taking with the
full BaBar on-line system and standalone
subsystems running on their test-stands.

Additionally there are certain requirements, which
influence both design and implementation, arising from
the fact that the configuration database is a vital part of
the real-time DAQ system.

2.2. Configuration data

Configuration database stores and serves configuration
data. Usually configuration data represent detector and
software settings for the data taking, such as voltages,
thresholds, trigger cuts, etc. The scope of these settings
is from the beginning to the end of the data taking, i.e.
single run. Different types of runs may require different
settings, e.g. physics data taking, cosmics, and
calibrations will need different triggers, high voltages,
etc. To serve different types of runs there should be a
number of “active” sets of configuration data, exactly
which set of configuration data is used for the next run is
determined by the run type.

2.3. Configuration objects

Configuration data in the database are stored in the
configuration objects, which are the “atoms” of the
configuration database – they are the basic units of
management. Single configuration object keeps related
data, usually needed to configure a particular piece of
hardware or software.

Every configuration object in the database has an
identity consisting of the three separate pieces:

1. Class name – non-empty string representing
the type of the object.

2. Optional secondary key – string used to
distinguish objects of the same type but used
for different purposes.

3. Configuration key – a number. Enumerates
objects of the same type/secondary key,
similar to version.

Object identity can be represented in a simple textual
format like “ClassName:SecondaryKey[ConfigKey]”, or

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOKT004

SLAC-PUB-9831 *

* Work supported in part by Department of Energy contract DE--AC03--76SF00515.

ePrint cs.db/0305056

“ClassName[ConfigKey]” when a secondary key is
missing. This representation is used in the figures below.
The configuration database provides direct access to all
configuration objects with their identity.

In addition to identity, the objects contain actual
configuration data. Configuration objects are immutable,
once created they never change; this allows exa ct
reconstruction of the past configurations. When the user
wants to change something in the configuration data,
(s)he needs to create a new configuration object with the
same type/secondary key, but with the new configuration
key (version). Configuration keys are assigned to the
objects by the database itself by incrementing the last
used key.

2.4. Configuration maps and trees

Complete configuration of the whole system is a
potentially big set of all configuration objects needed to
setup DAQ system. To simplify management of the
configuration this set should be further organized into a
single entity.

Configuration maps are special configuration objects,
which serve as containers with the named links to other
maps or objects. They have all the properties of the
configuration objects, such as identity and immutability.
The map object names the objects it is referring to; the
scope of these names is the map objects itself. This
allows two different map objects to refer to the same
object with different link names.

The maps are used as the building blocks for the
configuration trees. The tree has a single root map, and
the identity of the tree is the same as the identity of its

root map object. Any configuration objects in the tree
can be reached from the root of the tree by its path name,
which is the sequence of the names needed to navigate
from the root to the object in the tree. Because separate
maps can link to the same objects, the trees also can
share either basic objects or even sub-trees, thus
eliminating the need for duplicating configuration
objects. The complete configuration of the whole system
is a single tree, and it has an identity, which is the same
as the identity of the root map of the tree.

 Figure 1 shows an example of very simple
configuration tree, which includes only a small number
of configuration objects.

There is also a special configuration map in the system
which data taking run type strings into the configuration
trees. It has links to the root maps, the links are named
after the run types . Only one such mapping can be active
at any given type, the active map is one with the highest
configuration key. The trees referenced from the active
run type map are themselves active, and only they can be
used in the system. All other trees become a part of the
configuration database history.

2.5. Accessing configuration objects

The following scenario describes client access to the
configuration data.

The run starting sequence is managed by the Run
Control code. At the beginning of the new run Run
Control determines the run type, which is usually
specified by the operator. Then Run Control accesses the
database and uses the special run type map to determine
the identity of the configuration tree corresponding to

ConfigTopMap[250]

ConfigMap:Dch[13] ConfigMap:Emc[21]

 Config. Map

FileIdentifier:
DchCalCycles

[38]

CalConfigType:
DchCalib

[45]

FileIdentifier:
EmcCycles

[16]

ConfigFile:
EMC:EC:X

[2]

 Config. Object

Dch (Drift Chamber) Emc (Calorimeter)

DchCalCycles CalConfigType

Path to this object from
the tree root:
/Dch/DchCalCycles

Top Map – root of
the configuration
tree

ConfigFile:
EMC:BF:X

[2]

ConfigMap:
DetCont

[3]

ROMConfig DetCont

BF EC

Figure 1: Example of a simple configuration tree. The tree has a root map called “Top Map”, which refers to the
subsystem maps. Subsystem maps can link to the objects directly or to the next level maps.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOKT004 ePrint cs.db/0305056

the given run type. Run Control then distributes this
identity to all participating DAQ processes. Each process
uses this identity to access the corresponding
configuration tree. Also each process knows the path
name of its configuration object in a tree and uses this
path to locate and extract corresponding data object.

2.6. Building configuration trees

Configuration trees could be arbitrarily complex,
involving large numbers of objects. Building large trees
is complicated by two design decisions: 1) it is not
possible to change any existing object, 2) many active
trees could reference the same basic object or sub-tree.

Typical configuration editing operations in these
conditions would become rather involved. For example,
replacing one of the leaf objects with a new version
requires the update of all maps directly or indirectly
connected to this objects in all active trees, and then
replacing any modified tree in the run type map with the
new tree.

To facilitate the configuration editing operations, one
more structure is introduced into the configuration
database – alias trees. Alias trees repeat the structure of
the configuration trees but instead of real configuration
objects they are built with the map aliases and object
aliases. These aliases are free of one restriction of the
configuration objects – they are allowed to change. Also

instead of numeric configuration keys aliases are
identified by some meaningful alias names. An example
of the alias tree is shown in figure 2. The objects aliases
have links to the real configuration objects, while map
aliases are only placeholders and have no connection to
the corresponding configuration maps. Modifications to
the alias trees are much easier, for example the version
change of the basic object involves only the link between
object alias and that configuration object.

A special procedure is used to update the numeric
trees after the changes are applied to alias trees. This
procedure makes a node-by-node comparison of the
active numeric trees and alias trees, and rebuilds the
parts of the numeric trees affected by the changes in
alias trees.

3. IMPLEMENTATION

The configuration database is a vital part of the DAQ
system, and it works in a real-time environment, which
imposes strict requirements on performance and the
quality of the implementation. The total number of
clients accessing configuration data may reach 100, and
many of them access data simultaneously during the
“configure” transition when a new run starts.

3.1. Storage technology

 ConfigTopMap

[TOP_PHYSICS]

ConfigMap:Dch
[DCH_PHYSICS]

ConfigMap:Emc
[EMC_PHYSICS]

 Map Alias

FileIdentifier:
DchCalCycles

[PHYS_CYCLE]

CalConfigType:
DchCalib

[COMMON_CL]

FileIdentifier:
EmcCycles

[ROM_PHYS]

ConfigFile:
EMC:EC:X
[EC_CMN]

 Object Alias

Dch Emc

DchCalCycles CalConfigType

ConfigFile:
EMC:BF:X
[BF_CMN]

ConfigMap:
DetCont

[CTL_CMN]

ROMConfig DetCont

FileIdentifier:
DchCalCycles

[38]

CalConfigType:
DchCalib

[45]

FileIdentifier:
EmcCycles

[16]

ConfigFile:
EMC:EC:X

[2]

ConfigFile:
EMC:BF:X

[2]

 Config. Object

BF EC

Figure 2: Example of the alias tree. Structure of the aliases repeats the structure of the configuration tree
shown on Figure 1. Object aliases have links to the real configuration objects.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOKT004 ePrint cs.db/0305056

BaBar has chosen Objectivity/DB object database [4]
as a storage technology for many of its databases,
including the configuration database. There are many
benefits, which Objectivity offers:

• Direct mapping of the persistency constructs
into the OO paradigm and C++ constructs
(classes).

• Support for inter-object associations with
direct links between objects, there is no need
to run SQL-like queries to access the objects.

• Complete support of ACID (Atomicity,
Consistency, Isolation, and Durability)
properties, providing data integrity
guarantees.

One more benefit of object databases in the context of
the configuration database is the data model. The data
model used in object databases is a network of objects,
which makes the configuration database design easy to
implement in the object database.

Certainly the same design could be implemented with
a different data storage technology, such as relational
databases, but it would require more effort for such an
implementation with probable negative impact on
performance.

3.2. Data storage classes

All data storage objects in the configuration database
are implemented as a single hierarchy of the persistent
classes (see Figure 3). The root of the hierarchy is the
BdbConfigObject class, which inherits directly from the
Objectivity/DB ooObj class. The BdbConfigObject class
implements functionality common to all inheriting
classes, such as management of configuration keys,
storage of bookkeeping information, etc. Some
information, such as object class name and secondary
key, are the properties of the Objectivity container
object, which keeps the objects of the same class.

All concrete classes, which keep configuration data,
are subclasses of the BdbConfigObject class, and add
specific services for data management.

The configuration map class BdbConfigMap is
implemented also as a subclass of BdbConfigObject.
The configuration map class has a persistent map
instance, which implements the list of named links to
other configuration objects. There are two additional
subclasses of the BdbConfigMap class,
BdbConfigTopMap and BdbRunTypeMap, which
implement additional functionality or constrains needed
by the top configuration maps and run type maps.

3.3. Client data access

Clients of the configuration database use standard
BaBar approaches for accessing persistent data [5]. The
main idea in these approaches is persistent/transient
separation. Client code never manipulates persistent data
directly, instead client code is presented with the
transient interfaces which provide access to persistent
data. This separation allows clients to work
independently of the concrete implementation of
persistency mechanism. In this model every persistent
data class has its transient counterpart. Conversion
between transient and persistent representations of
configuration data is performed by special proxy objects.
The following scenario is used to access the data from
client code:

1. Initialization code creates proxy objects for
all types of configuration classes used in the
client application.

2. When client needs a particular configuration
object, it sends a request to the proxy
dictionary. Object type (transient object
class) is one of the request parameters.

3. Proxy dictionary locates a proxy object
responsible for the data of given type and
redirects the request to it.

4. Proxy finds persistent data in the
configuration database using the parameters
of the request or supplied during proxy
construction. It then converts the persistent
data into transient form and returns the
transient object to client.

Both BaBar Framework applications and standalone
applications can use proxy mechanism to work with the
configuration data.

There are also clients, which have no direct access to
database services, such as the code running in VME
under control of VxWorks. One additional service was
implemented which provides these clients with the
configuration data using the BaBar DAQ-specific
transport.

3.4. Tools and utilities

 ooObj

BdbConfigObject

BdbConfigMap

- key <<ConfigKey>>

- links: ooMap

*

XxxConfigData

- data <<Data>>

BdbConfigTopMap

+ makeShortcuts()

BdbRunTypeMap

Figure 3: Simplified diagram of the data storage
classes. Only one concrete data storage class
(XxxConfigData) is shown on this diagram.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4MOKT004 ePrint cs.db/0305056

There are two main tasks in managing the
configuration database: 1) creating new configuration
objects, 2) modifying configuration trees.

New configuration objects are created with standalone
utilities. Every separate type of configuration objects are
created with dedicated utilities, the data for the created
object are usually loaded from external sources, such as
files, or can be specified as command-line options.

There are two related utilities, which control every
aspect of the configuration trees and alias trees. The first
is a command-line tool with a simple, but powerful,
command language, which makes it easy to write
sophisticated command scripts and automation tools.
Another one is a GUI application (see Figure 4) built on
top of Qt/X11 framework [6]. This application supports
the same functionality as the command-line tool.

4. CONCLUSION

BaBar has designed and implemented a configuration
database for its on-line system, which provides
configuration services for the components of DAQ
system. The configuration database has successfully
operated since the beginning of data taking in 1999, with
minor modifications and additions later. The current
implementation is based on Objectivity/DB ODBMS.
The configuration database is a vital part of the BaBar
DAQ system and proved to be sufficiently performant
and reliable.

5. AKNOWLEDGMENTS

This work is supported by Department of Energy
contract DE-AC03-76SF00515.

References

[1] G. Zioulas, et al., “The BaBar Online Databases”,
CHEP2000, Padova, Italy, February 2000.

[2] I. Gaponenko, et al., “An Overview of the BaBar
Conditions Database”, CHEP2000, Padova, Italy,
February 2000.

[3] J. Olsen, et al., “BaBar Online Detector Control”,
CHEP2000, Padova, Italy, February 2000.

[4] Objectivity/DB ODBMS. See
http://www.objectivity.com.

[5] E. Frank, B. Jacobsen, “Architecture of the BaBar
Reconstruction System: Practical Issues”,
CHEP’97, Berlin, Germany, April 1997.

[6] Qt - mult iplatform C++ application framework.
See http://www.trolltech.com.

Figure 4: Graphical interface for the configuration database. Upper left panel shows configuration tree structure,
right panel displays configuration objects. Bottom part of the window is occupied by the message panel and
transaction control.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5MOKT004 ePrint cs.db/0305056

