
The Event as an Object-Relational Database: Avoiding the Dependency
Nightmare

C. D. Jones
Cornell University, Ithaca, NY 14853, USA

With the use of object-oriented languages for HEP, many experiments have designed their data objects to
contain direct references to other objects in the event (e.g., tracks and electromagnetic showers have references
to each other to denote matches). Unfortunately this creates tremendous dependencies between packages which
lead to brittle development systems (e.g., if the electromagnetic code has a problem you may not be able to
compile the tracking code) and makes the storage system more complex.
We discuss how the CLEO III experiment avoided these problems by treating an event as an object-relational
database. The discussion will include: the constraints we placed on our objects; our use of a separate Association
class to deal with inter-object references; and our ability to use multiple sources to supply different data items
for one event.

1. INTRODUCTION

Data within an event often relate to one an-
other, e.g., tracks are often matched to showers in
the electro-magnetic calorimeter. A simple object-
oriented design for objects in an event has these data
items containing pointers to one another. Unfortu-
nately, this causes serious dependency problems: large
compilation times, extremely long link times, and
broken code affects more systems. Using an object-
relational model avoids these problems and allows new
possibilities.

2. SIMPLE OBJECT-ORIENTED
APPROACH

A simple object-oriented design for data in an event
is shown in Figure 1. This design has related data
grouped into classes, e.g., Track and EM Shower
classes. The data values are stored in objects of the
appropriate class. For example, data describing one
track is stored in one object of class type Track. Fi-
nally, links between objects are implemented by em-
bedding pointers into the objects. For example, EM
Shower objects hold pointers to any Track which is
believed to be matched with that particular shower.
The appeal of this design is that it is easy for users to
navigate the relationships between objects.

Unfortunately, the simple object-oriented approach
leads to many problems. The first problem arises in
the software’s interfaces. Adding new relationships
between objects means changing the classes involved.
This change forces a recompilation of all code that
uses those classes. In addition, published objects (ob-
jects that are made available to other parts of the code
by placing the objects into the event) must be muta-
ble. This is because we need to be able to change
an object in order to set its relationship to another
object. This design also raises the question of how
to handle links in the case where multiple algorithms

produce the same data. For example, tracks from dif-
ferent track-finders could be matched to the same EM
Showers. Another question is where to put the data
that describes the relationship. In the ”track-shower”
matching example, where does the distance between
the track and the shower live? A final question is,
how do two people refer to the same object if each
has made a sub-selection of a list? This often arises
when people are comparing results from two different
analyses that are looking for the same decay mode.

Another set of problems arise for compilation and
linking of code. In highly coupled systems, if one piece
of code breaks, the whole system can break. E.g., if
tracking is broken a user may not be able to do EM
shower work. There are standard ways to decrease
dependencies in C or C++ [1] but the techniques may
not be known by all developers. To avoid excess com-
pilation dependencies in C or C++, you must forward
declare data in the header files rather than including
the data object header files. To avoid excess linking
dependencies, associated objects can not internally ac-
cess member functions of each other. E.g., we can not
have a function that calculates the energy of an EM
shower divided by momentum of the track. It is pos-
sible to relax this requirement if you organize your
code so that the associated routines are in a separate
object file. This works since many linkers force reso-
lution of all symbols found in an object file. A further
complication is that reference counting smart point-
ers cause strong compile and link-time dependencies
which is unfortunate since they make memory man-
agement easier.

The last set of problems we will discuss occur in ob-
ject storage. Direct references in objects complicate
storage. This arises since the storage system needs
to convert pointers to and from persistent values. If
objects use bidirectional links, it is necessary to con-
struct both objects before linking them. To simplify
the storage system, developers often couple their ob-
jects directly to the storage system. Unfortunately,
this coupling locks the developer into using only one

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOJT011 ePrint hep-ex/0305091



Hit

Hit

Hit

Hit

Hit

Hit

Hit

Hit

Track

Track

EM Shower

EM Shower

EM Shower

Figure 1: Example of simple object-oriented approach to object relationships. Each box represents an object and the
lines connecting the boxes represent pointers linking the objects.

storage mechanism even if that mechanism is not ap-
propriate for all the experiment’s data. Reading and
writing objects causes compile, link and runtime de-
pendencies between classes. This is true even if ob-
jects only hold pointers to other types of objects. It
is possible to avoid some of these dependencies if the
developer is willing to read back unlinked objects. Un-
fortunately, use of such unlinked objects forces physi-
cists who use the system to tell the system when the
links should be made. So the user is burdened with
the responsibility to be sure the link is made before
she tries to use the link.

3. OBJECT-RELATIONAL APPROACH

The problems mentioned in the previous section led
us to try an object-relational approach. In this ap-
proach, no objects have pointers to objects outside
’atomic’ storage boundaries. E.g., MC particles can
hold pointers to their children if they are stored as
a unit. A second requirement of this approach is
that all objects in lists must have a unique identi-
fier. Physicists can use the identifier when talking
with other physicists about the objects. In our sys-
tem, we use our own templated Table class to hold
lists of objects which sort the objects via their iden-
tifier method. Also in our system, lists are identified
via unique keys based on the type of the objects in the
list plus two character strings. Therefore objects can
be uniquely identified by what list it is in and by what
identifier it has within the list. The final requirement
of the object-relational approach is to define relation-
ships via separate objects, which we call Lattices [2].

A Lattice is an object which links relationship
data (e.g., the distance between a Track and an EM
Shower) to the identifiers of two different objects (de-
noted by Left and Right). The Lattice supports all
16 possible configurations for links. A configuration
is defined by four separate sub-configurations where
each sub-configuration has two choices. The four sub-
configurations are:

• 1 or many Lefts per Link

• 1 or many Rights per Link

• 1 or many Links per Left

• 1 or many Links per Right

Figure 2 shows an example of the object-relational
approach. The figure shows the Hit, Track and EM
Shower objects with each object having a unique iden-
tifier within its respective list. Between the Hit and
Track lists is the Hit-to-Track Lattice. Within the
Lattice you can see the separate objects holding the
different link information. For example, the first link
in the Hit-to-Track Lattice says that Hit 1 (denoted
by the left hand number) is connected with Track 1
(denoted by the right hand number). Similarly, the
Track to EM Shower Lattice is shown between the
Track and EM Shower lists.

The object-relational approach has many advan-
tages. First, it shortens link times. In our experi-
ence, linking usually takes less than 30 seconds on a
moderately powerful machine. However, we use dy-
namic loading so we only have to link to the libraries
a module directly needs and this reduction in the num-
ber of libraries needed for linking also contributes to

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOJT011 ePrint hep-ex/0305091



Hit:1

Hit:2

Hit:3

Hit:4

Hit:5

Hit:6

Hit:7

Hit:8

Track:1

Track:2

EM Shower:1

EM Shower:2

EM Shower:3

1:data:1

2:data:1

4:data:1

7:data:1

3:data:2

5:data:2

6:data:2

8:data:2

1:data:1,2

2:data:2

Figure 2: Example of the object-relational approach to object relationships. Each box represents an object. The boxes
within the longer boxes are the Link objects held within each Lattice. Relationships between objects are determined by
matching the numbers held in the Link objects with the appropriate objects identification number.

our short link times and allows compilation on very
moderate machines. Second, this approach simplifies
the code used for storage. Because the system is not
coupled to one storage mechanism, it is easy to sup-
port many specialized storage formats. Third, this
approach speeds up data read-back since we only re-
trieve data a user actually uses. E.g., we can ask if a
Track is matched to an EM Shower without needing
to construct the EM Showers. Fourth, it is possible
to use multiple data sources (each with their own for-
mat) on read-back. E.g., our system can build an
event by combining a physicist’s data skim with the
experiment’s event database.

One disadvantage of this approach is it makes nav-
igating the relationships between objects more com-
plex. To offset this disadvantage, we have created
’Navigation’ objects that give direct access to related
objects. These objects internally look up the relation-
ship information in the appropriate Lattice and then
use the regular data access mechanism to retrieve the
appropriate related objects. Effectively, the Naviga-
tion objects do what users would have to do in order
to obtain related objects. To avoid interdependencies
in critical software, only analysis code is allowed to
use Navigation objects. Additionally, we have taken
special care so that only by accessing an object via
Navigation does the users code become compile/link-
time dependent on that object. E.g., if a user does not
use EM Showers then you do not need to link to them,
even though the Navigation tracks could access them.
Finally, to make code maintenance easier, we only al-
low the one library that holds the Navigation objects
to have interdependencies between objects. It also
means that only the developer in charge of the Navi-

gation library has to be an expert on how to minimize
interdependencies in C++ code.
4. CONCLUSION

The general wisdom when writing code is that
compile/link/run-time dependencies make code less
robust. We have found it possible to avoid unneces-
sary dependencies by encapsulating relationships be-
tween objects into a separate object. However, pro-
viding direct link objects only to analysis users works
well. Their code usually accesses most high level data
objects, and analysis code has the shortest usage life-
time so long-term maintenance issues are less impor-
tant. By following the object-relational approach, we
have seen our user’s productivity and satisfaction in-
crease because they have gained shorter compile and
run times.

Acknowledgments

This work was supported by the National Science
Foundation.

References

[1] J. Lakos, Large Scale C++ Software Design,
Addison-Wesley, 1996.

[2] J. Thayer, Event Bookkeeping for CLEO3, Pro-
ceedings of Advanced Computing and Analysis
Techniques in Physics Research: VII International
Workshop, 2001, 149-151.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOJT011 ePrint hep-ex/0305091


