

The Athena Data Dictionary and Description Language

Alain Bazan, Thierry Bouedo, Philippe Ghez
LAPP, Annecy-le-Vieux, FRANCE

Massimo Marino, Craig Tull
LBNL, Berkeley, USA

Athena is the ATLAS off-line software framework, based upon the GAUDI architecture from LHCb. As part of ATLAS' continuing
efforts to enhance and customise the architecture to meet our needs, we have developed a data object description tool suite and service
for Athena. The aim is to provide a set of tools to describe, manage, integrate and use the Event Data Model at a design level according
to the concepts of the Athena framework (use of patterns, relationships, ...). Moreover, to ensure stability and reusability this must be
fully independent from the implementation details. After an extensive investigation into the many options, we have developed a
language grammar based upon a description language (IDL, ODL) to provide support for object integration in Athena. We have then
developed a compiler front end based upon this language grammar, JavaCC, and a Java Reflection API-like interface. We have then used
these tools to develop several compiler back ends which meet specific needs in ATLAS such as automatic generation of object
converters, and data object scripting interfaces. We present here details of our work and experience to date on the Athena Definition
Language and Athena Data Dictionary.

1. INTRODUCTION

This document describes in brief the development and
implementation of an "ATLAS Data Dictionary" (ADD) in
the Athena Architecture. For full details see:[1].
Athena is the ATLAS off-line software framework, based
upon the GAUDI architecture from LHCb. As part of
ATLAS' continuing efforts to enhance and customise the
architecture to meet needs of the users, we have developed a
data object description tool suite and service for Athena. The
term “data dictionary” is being used in ATLAS to cover
several related, but distinct concepts and techniques. Each of
these concepts plays a different set of roles in an architecture
dependent upon a data dictionary. We categorise these
concepts into three general topics:

• Introspection/Reflection/Object Description/Run-
Time Typing: This refers to objects in program
memory with the ability to describe themselves in a
programmatic way through a public API such that
they can be manipulated without a priori knowledge
of the specific class/type of the object.

• Code Generation: This refers to a process of
generating code for performing a specific task from a
generic description/input file.

• Self-Describing External Data Representation
(e.g. Data Files): This refers to external data

representations (e.g. file formats, on-wire data
formats) which contain metadata describing the
payload of the data file, etc...

2. ADVANTAGE OF A DATA DICTIONARY

The data dictionary is a description of the objects to a high
abstraction level.

These tool avoid tedious integration of objects to the
framework, concentrate the object development only on his
behaviour and provide the objects with all the mechanism of
conversion between transient and persistent stores. At run
time it gives access to transient objects allowing debugging,
visualisation, use scripting... These description allows re-use
of the objects already present in the dictionary, the
management of the evolution of the described objects and
provides information on persistent objects and collections
without loading them in transient store.

3. LANGUAGE AND TOOLS

3.1. Choice

One of the most visible implementation decisions of a DD
for Athena is the choice of the computer language used in
the dictionary. Declarative computer languages are widely

 C++ IDL JAVA ODL DDL XML
Machine Independence No Yes Yes Yes Yes Yes
Programming Language Independence No Yes No Yes No Yes
Open-Source/Free Parsers Available Yes Yes Yes Yes No ?
Object Behavior Definable Yes Yes Yes Yes Yes ?
Object State Definable Yes Yes Yes Yes Yes ?
Public/Private Member Yes No Yes No Yes ?
Persistency No No Yes No Yes ?
Use of Predefined Types Yes Yes Yes Yes Yes ?
Use of External (Undefined) Types No No No No No ?

Table 3: ADL candidate feature comparison

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOJT010 ePrint cs.se/0305049

used tools in the CS and IT communities. A list of choices
considered and associated tools available to parse the
language is shown in the comparison’s Table 3:

After an extensive investigation into the many options, we

concluded that none of the language candidates fully
matched ATLAS requirements, and that some compromise
and/or language extension would be required.

We settled on and developed a language grammar based
upon a proper subset of IDL 2.0 extended to provide support
for object persistency and complex inter-object relationships.

The included extensions are:
ODL keyword to express bi-directional relationships:

relationship
keyword to express persistency: persistent
keyword to support opaque objects: extern
keyword to declare objects of Athena: DataObject,

ContainedObject, CollectionObject keyword to manage the
visibility of the objects attributes: private

We called this extended proper subset of IDL: ADL for

Athena Description Language. Such a declarative language
helps separating objects’ interfaces and behaviours from
their implementations, isolating users of a system from
implementation details, facilitating technology migration,
and easing software development by eliminating tedious and
error-prone rote programming.

Moreover, the choice of ADL because of its explicit

independence of programming languages makes future
possible evolution more feasible.

3.2. Tools

Code generation tools are parser-based tools which
process the ADL. With the choice of a real computer
language as the basis of the Data Dictionary, it becomes
imperative that a real parser be used to compile the DD
language and realise the DD functionality. Experience has
shown that multiple back-ends (emitters) for the parser are
necessary. The reality of a possible evolution of ADL
suggests that the compiler front-end should be replaceable.

We chose JavaCC (the Java Compiler Compiler) as the

parser for our compiler front end for the following reasons:
• Large number of languages supported (34 grammars

from Ada to XML)
• Widely used & actively supported and developed
• Easily extended grammar
• Platform independence

Of all the tools considered and evaluated, JavaCC was the
only one which supported all of the candidate languages.
This made it particularly attractive in that a change in ADL
language does not imply a change in parser.

4. DESIGN

4.1. From description to utilisation

The high-level design of the code generator is a standard
2-tier design. An ADL object description is fed into the
Compiler Front End (CFE) consisting of the JavaCC
generated parser (from the ADL Grammar). The parser
produces an Abstract Syntax Tree using the JJTree package.
A standard visitor pattern class walks the AST and fills an
in-memory representation of the object description (the
Meta-Object Representation). Multiple Compiler Back Ends
(CBEs) use the information stored in the Meta-Object
Representation to generate code for use in the Athena
framework.

4.2. Meta-model

The Meta-Object Representation is a set of classes
implementing a Java Reflection-like API and which
insulates the writers of the compiler back-ends (CBEs) from
the details of the JJTree AST. The static class diagram
including the Meta-Object Representation design is shown in
Figure 4.2.

Compiler Front End
Compiler Front End

ADL ADL
ParserParser
JavaCCJavaCC

Back
End

BackBack
EndEnd

Back
End

BackBack
EndEnd

Back
End

BackBack
EndEnd

C o d eC o d e
Cxx,Java,...Cxx,Java,...

CodeCode
Cxx,Java,...Cxx,Java,...

CodeCode

Cxx,Java,...Cxx,Java,...

ADL ADL
AnalyzerAnalyzer

SourceSource
ADLADL

Meta ObjetMeta Objet
RepresentationRepresentation

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOJT010 ePrint cs.se/0305049

Figure 4.2 UML static class diagram

5. FUNCTIONALITIES

5.1. Code generation

The last code for the ATLAS data dictionary was released
at the end of November 2002. Included in this release was
the full ADL JavaCC grammar and generated parser, the
JJTree-based visitor and Meta-Object Representation
classes, and three compiler back ends. The following use
cases diagram shows how to generate code:

Although it is easy to write a new back-end as needed, the
three following Compiler Back Ends are provided today:

 • Data Object CBE: Generates C++ classes for user data
objects with: ATLAS defined Constructors and Destructors,
Single and Multiple Inheritance, Private Data Members &
Accessor/Mutator Methods, Public Method Functions
(beyond accessors/mutators), Interobject Associations, STL
Support, and user written extensions.

• Converter CBE: Generates Athena converters for
persistency using Objectivity Conversion service or ROOT
conversion service.

• Scripting CBE: Provides a Python interface allowing
limited access to, and control of data objects at the command
line (see CHEP'01 paper 3-064). The three back ends work
together or independently to provide needed Athena
functionalities.

5.2. Dynamic interaction

Another main functionality of the Athena Data Dictionary
is to dynamically manage the described objects. It answers
the use cases as shown in the following diagram:

This functionality is mainly based on an

Introspection/Reflection mechanism allowing connections
between object’s description and object’s instance at run-
time. This refers to objects in program memory with the
ability to describe themselves in a programmatic way
through a public API such that they can be manipulated

1 0..*

0..*

1

0..* 1

0..*

1

0..*

0..*

0..* 0..1

0..*

0..*

InterfaceDefinition

AttributeDefinition1

OperationDefinition ParameterDefinition

GenObject

RelationDefinition ElementaryDefinition

TypeDefinition

StructureDefinition

Choose the back-end

configure the back-end

compile & generate code

user

call method on a described object

find object description

access attributes of a described object

delete described object

create described objectfind described object

browse described objects

user

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOJT010 ePrint cs.se/0305049

without a priori knowledge of the specific class/type of the
object.

This functionality should integrated and used in Athena

according to the sequence shown in the figure 5.3.

The sequence goes through the following steps:
1. Creation of the object by the algorithm
2. Registration to the transient store and the data dictionary

service
3. Access to the object description by the interactive part

of the framework
4. Access to the object through the data dictionary service

and the introspection module

6. CONCLUSION

The data dictionary-based code generators have been
successfully used by some ATLAS collaborators, and three
tutorials were given in June 2001, March 2002 and May

2002 based upon a Liquid Argon reconstruction data model.
Integration in Athena has also been done by writing CMT
fragments and Automatic ClassID generation. Connected to
the ADL, a module has been developed for the Together
case tool to generate graphically ADL code [2]. Moreover, a
large amount of documentation (user guide, language
reference manual, pocket guide, examples, FAQ,…) has
been produce to provide user support.

Nevertheless, although this data dictionary project was

answering the Atlas requirements, it has been abandon. This
implies to ask ourselves about the reasons to draw lessons
from that:

• Are people really ready to concentrate there efforts at
the design level using an high level description
language, independent of the implementation?

• Has this tool taken place too late in the Athena
framework while a lot of C++ code was already
written? (connected feedback: reverse engineering is
not miraculous!).

• Has this project been politically killed at the birth of
the LCG?

References

[1] A. Bazan, T. Bouedo, P.Ghez, M.Marino, C.E.Tull,
“Athena Web site - Dictionary”,
http://atlas.web.cern.ch/Atlas/GROUPS/
SOFTWARE/OO/architecture/DataDictionary/.

[2] M.Marino “Extending the code generation
capabilities of the Together CASE tool to support
Data Definition languages”, 2003 Computing in High
Energy and Nuclear Physics (CHEP03), La Jolla, CA,
USA, 2003

ADL Object Descriptions
RepositoryRepository

ADL Object Descriptions
RepositoryRepository

•
CreationCreation

Transient
Event Store

Algorithm

DescriptionDescription

IntrospectionIntrospection
ModuleModule

AccessAccess

AccessAccess

RegistrationRegistration

RegistrationRegistration
ADLADL

ObjectObjectAccess interfaceAccess interface
SERVICESSERVICES

Registered objects list
Object description
Method invocation

Data member consultation

•Data Dictionary
Service

CreationCreation

Transient
Event Store

Algorithm

DescriptionDescription

IntrospectionIntrospection
ModuleModule

AccessAccess

Access interfaceAccess interface
SERVICESSERVICES

Registered objects list
Object description
Method invocation

Data member consultation

BrowserBrowserScriptingScripting

AccessAccess

RegistrationRegistration

RegistrationRegistration
ADLADL

ObjectObject

•
CreationCreation

Transient
Event Store

Algorithm

DescriptionDescription

IntrospectionIntrospection
ModuleModule

AccessAccess

AccessAccess

RegistrationRegistration

RegistrationRegistration
ADLADL

ObjectObjectAccess interfaceAccess interface
SERVICESSERVICES

Registered objects list
Object description
Method invocation

Data member consultation

•Data Dictionary
Service

CreationCreation

Transient
Event Store

Algorithm

DescriptionDescription

IntrospectionIntrospection
ModuleModule

AccessAccess

Access interfaceAccess interface
SERVICESSERVICES

Registered objects list
Object description
Method invocation

Data member consultation

BrowserBrowserScriptingScripting

AccessAccess

RegistrationRegistration

RegistrationRegistration
ADLADL

ObjectObject

Figure 5.3 Dynamic interaction

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4MOJT010 ePrint cs.se/0305049

