

SEAL: Common Core Libraries and Services for LHC Applications
J. Generowicz, P. Mato, L. Moneta, S. Roiser
CERN, Geneva, Switzerland

M. Marino
LBNL, Berkeley, CA 94720, USA

L. Tuura
Northeastern University, Boston, MA 02115 , USA

The CERN LHC experiments have begun the LHC Computing Grid project in 2001. One of the project's aims is to develop common
software infrastructure based on a development vision shared by the participating experiments. The SEAL project will provide common
foundation libraries, services and utilities identified by the project's architecture blueprint report. This requires a broad range of
functionality that no individual package suitably covers. SEAL thus selects external and experiment-developed packages, integrates
them in a coherent whole, develops new code for missing functionality, and provides support to the experiments. We describe the set of
basic components identified by the LHC Computing Grid project and thought to be sufficient for development of higher level framework
components and specializations. Examples of such components are a plug-in manager, an object dictionary, object whiteboards, an
incident or event manager. We present the design and implementation of some of these components and the underlying foundation
libraries in some detail.

1. THE BLUEPRINT RTAG

The formal process established in the LHC Computing
Grid project (LCG) to capture the requirements of the LHC
experiments and identify areas of potential common interest
among the experiments is by launching a so called
Requirements and Technology Assessment Group (RTAG).
RTAG 8 was mandated to define the architectural ‘blueprint’
for LCG applications:

• Define the main architectural domains (‘collaborating
frameworks’) of LHC experiments and identify their
principal components.

• Define the architectural relationships between these
‘frameworks’ and components, including Grid
aspects, identify the main requirements for their inter-
communication, and suggest possible first
implementations.

• Identify the high-level milestones for each domain
and provide a first estimate of the effort needed.

• Derive a set of requirements for the LCG
The basic idea is that any piece of software developed by

any LCG common project must conform to a coherent
overall architectural vision. The main goal is to facilitate the
integration of LCG and non-LCG software to build coherent
applications. The blueprint is established in terms of a set of
requirements, suggested approaches and guidelines, and
recommendations.

The findings, guidelines and recommendations of the
RTAG are summarized in the RTAG report [1]. Here are
some of the identified architectural elements:

• Interface model with abstract interfaces, versioning
and guidelines.

• Component model . Communication via public
interfaces (no hidden channels), plug-ins (run-time
loading), life-time management (reference counting),
application and component configuration.

• Design guidelines. Software dependencies, exception
handling, interface to external components.

• Object Dictionary. The ability to query a class about
its internal structure (Introspection). Essential for data
browsing, rapid prototyping, persistency, etc.

• Object Whiteboard . Uniform access to application-
defined objects (equivalent to the Gaudi transient
stores [2]).

• Component Bus. To easy the integration of
components providing a wide variety of functionality
and developed independently.

The overall software structure and the role of the different
frameworks, ranging from generic ones to specialized to
given domain is shown in Figure 1.

Basic Framework

Foundation Libraries

S
im

ul
at

io
n

F
ra

m
ew

or
k

R
ec

on
st

ru
ct

io
n

Fr

am
ew

or
k

V
is

ua
liz

at
io

n
F

ra
m

ew
or

k

Applications

. . .

Optional Libraries

O
th

er
F

ra
m

ew
or

ks

Basic Framework

Foundation Libraries

S
im

ul
at

io
n

F
ra

m
ew

or
k

R
ec

on
st

ru
ct

io
n

Fr

am
ew

or
k

V
is

ua
liz

at
io

n
F

ra
m

ew
or

k

Applications

. . .

Optional Libraries

O
th

er
F

ra
m

ew
or

ks

Figure 1 Diagram showing the basic software structure with
the different levels from foundations libraries to application
software.

 The recommendations of the blueprint RTAG can be
summarized as:

• RTAG establishes a user/provider relationship
between LCG software and ROOT [3]. LGC software

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOJT003 ePrint physics/0306033

Event
Generation

Core Services

Dictionary

Whiteboard

Foundation and Utility Libraries

Detector
Simulation

Engine

Persistency

StoreMgr

Reconstruction

Algorithms

Geometry Event Model

Grid
Services

Interactive
Services

Modeler

GUI
Analysis

EvtGen

Calibration

Scheduler

Fitter

PluginMgr

Monitor

NTuple
Scripting

FileCatalog

ROOT GEANT4 DataGrid Python Qt

Monitor

. . .MySQLFLUKA

Event
Generation

Core Services

Dictionary

Whiteboard

Foundation and Utility Libraries

Detector
Simulation

Engine

Persistency

StoreMgr

Reconstruction

Algorithms

Geometry Event Model

Grid
Services

Interactive
Services

Modeler

GUI
Analysis

EvtGen

Calibration

Scheduler

Fitter

PluginMgr

Monitor

NTuple
Scripting

FileCatalog

ROOT GEANT4 DataGrid Python Qt

Monitor

. . .MySQLFLUKA

will not be based on ROOT; it will use ROOT where
appropriate.

• Start common project on core tools and services (the
SEAL Project)

• Start common project on physics interfaces
• Start an RTAG on analysis, including distributed

aspects
• Tool/technology recommendations such as CLHEP,

CINT, Python, Qt, and AIDA
• Develop a clear process for adopting third party

software.

2. THE SEAL PROJECT

The purpose of the SEAL project is to provide the
software infrastructure, basic frameworks, libraries and tools
that are common among the LHC experiments. The project
should address the selection, integration, development and
support of foundation and utility class libraries. These
utilities cover a broad range of unrelated functionalities and
it is essentially impossible to find a unique optimum
provider for all of them. They should be developed or
adapted as the need arises. In addition to these foundation
and utility libraries, the project should develop a coherent set
of basic framework services to facilitate the integration of
LCG and non-LCG software to build coherent applications.

The scope of the SEAL project covers a big area in the
domain decomposition as is shown in Figure 2. The basic
two areas are: the Foundation and Utility libraries, and the
Basic Framework services. The Foundation and Utility
libraries include the basic types in addition to the ones
provided by la programming language (Boost, CLHEP, …),
utility libraries, system isolation libraries, domain specific
foundation libraries. The Basic Framework Service includes
the component model, reflection, plug-in management,

incident (event) management, distributed computing, grid,
scripting, etc.

In addition to the two main areas, some elements of the
interactive and grid services are also included since is very
likely that these elements will be common to various LCG
projects.

The SEAL project should provide a coherent and as
complete as possible set of core classes and services in
conformance with overall architectural vision described in
the Blueprint RTAG. The following are some assumptions,
constraints and risks about the project:

• We will not re-invent wheel. Most of the core
software to be delivered by SEAL exists - more or
less - in experiments’ core software in some form.

• We will re -use as much as possible existing software
either from public domain or HEP specific one. Most
of the work will be in re -packaging existing pieces of
software.

• If what exists is not completely adequate, we will
develop / adapt / generalize in order to achieve the
necessary level of coherency and conformance to the
architectural vision already established in the
Blueprint RTAG.

• In order to use SEAL, projects will need to replace
their own software elements with SEAL functionally
equivalent ones. This will certainly imply some
period of instability for the experiment applications.

3. WORK PACKGAGES

In the following sections we review the different work
packages that have been initiated in the SEAL project. We
will be summarizing the current activities and the current
status and expected deliverables.

Figure 2 Software Domains covered (light blue) by the applications area of the LCG
project and not covered (dark grey).

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOJT003 ePrint physics/0306033

3.1. Foundation and Utility Libraries

The idea of this work package is to provide class libraries
to complement the standard types and utility libraries (a
broad range of unrelated functionalities which makes sense
to re-use across LCG projects). The goal is to minimize
development of foundation and utility libraries in each LCG
project and concentrate on the union of the needs in a single
set of packages. An inventory of existing utility classes has
been produced and the decision to provide support for Boost
library [4] has been taken. Boost is an open source utility
library, and parts of which are destined to be included in the
following C++ standard. Support for CLHEP [5] is also
envisaged since it provides HEP specific data types in wide
use already in the experiments.

We are developing the SEAL utility and system library
with pieces comp lementary to Boost and STL from existing
code from various libraries in use currently in the
experiments. The first versions of such libraries have been
released and they are in use by other LCG projects.

3.2. Math Libraries

The Math Libraries project, originally an independent
LCG project launched after the conclusions of an RTAG in
reviewing math libraries, has become a work package of the
SEAL project. We should provide to the experiments with
math and statistics libraries to be used in analysis,
reconstruction and simulation.

One of the initial activities has been an evaluation of the
GSL [6] library with a view to deploying it fully in the
experiments’ software. The idea is to standardize on this
library where mathematical functionality is concerned and
give support to the experiments in using it.

The Minuit [7] minimization package is being rewritten in
an object-oriented style, in C++. The idea is to provide all
the functionality already existing in the original Fortran
version, and to make it easily extensible with more
performing algorithms using, for example, dynamically
loadable plug-ins. This work includes studies of linear
algebra packages, investigating their functionality and
performance.

3.3. Component Model and Plug-in Manager

In the LCG architecture described in the Blueprint RTAG,
a plug-in is a logical module that encapsulates the concrete
implementation of a given service. The plug-in manager
service is responsible for loading, activating, deactivating
and unloading plug-ins at run-time. This is a functionally
that is desired and in use already by all LHC experiments.
The plug-in manager holds cached information about what
modules are known, and what plug-ins can be instantiated
from them as it is shown in Figure 3. The existing
implementation is based on the ideas and code from the
Iguana [8] project.

Figure 3 Organization of run time plug-in database provided
by the plug-in manager to manage runtime cache
information about existing modules and the plug-ins they
contain.

In addition to the plug-in manager, we are currently
developing the co-called component model. This is a set of
mechanisms and conventions by which we want to model
the components and services that constitute an application.
Questions like what shape they have, how the interfaces are
exposed and eventually discovered at runtime, identification
and configuration, reference counting for implementing an
object lifetime strategy, component communication favoring
a peer-to-peer strategy are examples of the issues that need
to be defined. The aim is to define this comp onent model
and provide a number of base classes, interfaces and
guidelines that developers can use to develop their own
services or applications that comply with the model. The
final goal is to achieve an easy way of re-using services and
components developed in the different projects and
experiments.

3.4. LCG Object Dictionary

The Blueprint RTAG identified as an essential element the
object dictionary to provide reflection functionality by
complementing the existing very limited native C++ RTTI
(Run Time Type Information). It is highly desirable that this
functionality be provided in common across all projects and
experiments to exploit the benefits of it . The main idea is to
provide pure C++ reflection functionality without any
assumption about the possible clients of this information,
similar to in the way in which this functionality is provided
by other more modern programming languages like Java or
C#. Examples of possible clients of the dictionary
information are the object persistency layer (e.g. POOL),
interactive and scripting services, data browsers, remote
communication procedures, etc.

In this work package there are two aspects to be taken into
account: the population of the dictionary information from
some source and the runtime access to the dictionary
information through the reflection interface. The reflection
interface is provided by a package that is independent of
information source and the client, and provides access to all
C++ features.

We have developed tools for populating the dictionary
directly from C++ header files, which is the mechanism
required by some of the LHC experiments. These tools are
based on the gcc_xml [9] package. We are able to generate
dictionaries for fairly complex object models without having

Plug- In
Cache Plug- In

Cache

Object
Factory Object

Factory
Plug-in

Database Plug- In
Cache

Module
Module

Module
Module

Module Object
Factory

Attached

Unattached

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOJT003 ePrint physics/0306033

to instrument or change any input C++ header file. The work
flow for the dictionary generation is illustrated in Figure 4.
The selection of the classes for which to generate the
dictionary and any extra information concerning persistency
capabilities or other information is provided by a selection
file. The lcgdict command uses gcc_xml to generate an
intermediate XML representation of a syntax tree describing
the contents of C++ header files, which is then used to
generate the dictionary filling C++ code (for the “selected
classes”) from which we produce a dynamic library that can
be loaded at run time to create the dictionary in memory.

.xml

.h

.h lcgdict
.h.h

gccxml .xml filter
+

exten

gendictpar
ser

_dict.cpp

.so

make

selection file

(python script)

#include files
.xml

.h

.h lcgdict
.h.h

gccxml .xml filter
+

exten

gendictpar
ser

_dict.cpp

.so

make

selection file

(python script)

#include files

Figure 4 Work flow of the dictionary generation starting
from header files using GCC_XML.

As part also of the project, we are currently developing
various gateways between different object dictionaries to
facilitate the integration and interoperability between
languages and frameworks. For example, the way the
dictionary is used in the ROOT implementation of the
storage manager in POOL [10] is by populating the ROOT
dictionary from the LCG dictionary at run-time in the
initialization phase, which is then used later directly by the
ROOT streaming sub-system. This is shown schematically
in Figure 5.

Another gateway that is being developed is a gateway to
the Python interpreter. This enables the Python interpreter to

access and manipulate any C++ class for which the
dictionary information exists, without the need to develop
specific bindings for that class. This work also provides a
useful completeness check for the LCG reflection interface,
as it exercises the behavioral part of the object model which
is not used much in the object persistency utilities.

Another required gateway already identified in the
Blueprint RTAG is the one that would allow a user to
interact from ROOT (CINT) with any class in the dictionary
as it will be done with Python (inverse direction to the one
developed currently in POOL).

3.5. Basic Framework Services

In this work package we intend to develop a number of
basic framework services based on the component model as
described previously. These services should be very basic
and neutral to any domain specific framework such as
simulation, reconstruction, visualization etc. Examples of
these services are: message reporting, exception handling,
component configuration, “event” management, object
“whiteboard”, etc. It is understood that more services of
common interest will be identified during the project
execution as needs in other projects or in the experiments
will arise, and that it will make sense to develop them in
common.

The so-called object “whiteboard” is described in the
Blueprint RTAG report as a mechanism to organize and
locate event or detector objects that need to be shared among
services or algorithms. This is pattern that appears very often
in event data processing applications in our domain, so it
makes sense to standardize on something that later can be
exploited by adding extra functionality. It is important to
study in detail the interaction of this component with the

ROOT I/O

LCG
DictionaryCINT

DictStreamer

.h

in

out

ROOTCINT

CINT generated
code Dict generating

code

.adl
.xml

ADL/GOD

Other
Clients:
(python,

GUI, etc.)

LC
G

to
 C

IN
T

D
ic

t
ga

te
wa

y

(2)

(1)

Population

Conversion

Reflection

GCC-XML

ROOT I/O

LCG
DictionaryCINT

DictStreamer

.h

in

out

ROOTCINT

CINT generated
code Dict generating

code

.adl
.xml

ADL/GOD

Other
Clients:
(python,

GUI, etc.)

Other
Clients:
(python,

GUI, etc.)

LC
G

to
 C

IN
T

D
ic

t
ga

te
wa

y

(2)

(1)

Population

Conversion

Reflection

GCC-XML

Figure 5 Overall flow of object dictionary information from primary source to its
use at run-time by the object persistency layer and other clients.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4MOJT003 ePrint physics/0306033

persistency services, visualization services and others.

3.6. Scripting Services

The SEAL project should provide the basic infrastructure
to support scripting. In particular, two scripting languages
(Python and CINT) were identified in the Blueprint RTAG.
The bindings for Python and CINT of the basic services will
be needed to provide a “component bus” that will allow easy
integration of components, possibly implemented in a
variety of languages and providing a wide range of
functionality. Other bindings to more domain specific
components will be provided by the corresponding project.
For example, bindings for physics analysis tools will be
provided in the Physics Interface project.

There is a variety of techniques for developing Python
bindings of C++ classes (Python extension modules) in
addition the one already mentioned, based directly on using
the LCG object dictionary. Therefore, one of the initial
activities has been the evaluation of the existing
technologies such as SWIG, Boost.Python, SIP, etc. and
understanding their interoperability and the possibility of
exchanging python objects wrapped using two different
technologies. Guidelines for developing Python bindings
will be produced in order to guarantee coherency and
interoperability between LCG and experiment projects.

Within this work package we will be developing Python
bindings to commonly used packages such as CLHEP, GSL,
etc. following the agreed guidelines. In the case of ROOT,
we have developed already a generic package PyROOT,
formerly called RootPython [11], which allows interacting
with any ROOT class generically by exploiting the internal
ROOT/CINT dictionary.

4. STATUS AND CONCLUSIONS

The SEAL project started last November after the
recommendations of the Blueprint RTAG and has already
started to provide the software infrastructure, basic
frameworks, libraries and tools that are common among the
LCG projects and LHC experiments. Several releases of the
project have been made available, which provide some of
the functionality that was initially requested. Priority has
been given to the pieces required by the POOL persistency
project (main emp hasis on foundation and utility classes,
plug-in management and object dictionary).

A big fraction of the current code base has its origins in
various projects across LHC experiments (Iguana, Gaudi,
HepUtilities, etc.). This has allowed us to very quickly
produce high quality software and with the functionality that

we believe is close to what is really needed, since it is based
on recent past experiences.

The first more completed release is scheduled for the end
of June and should incorporate sufficient functionality to be
used by any other LCG project and by LHC experiments’
frameworks, to replace their existing equivalent
functionality.

Acknowledgments

The authors wish to thank all people currently
participating to the applications area of the LCG project for
their contribution in defining the requirements of SEAL
project and their support. Specially, we wish to tank the
members of the SPI project for their help in setting up the
software development infrastructure.

References

[1] T. Wenaus et al., Report of the LHC Computing Grid
Project Architecture Blueprint RTAG, CERN-LCG-
2002-022. See also
http://cern.ch/LCG/SC2/RTAG8/finalreport.doc

[2] G. Barrand et al., GAUDI: A software architecture and
framework for building HEP data processing
applications, Computer Physics Communications
140(2001) 45-55. See also http://cern.ch/Gaudi

[3] R. Brun and F. Rademakers, ROOT - An Object
Oriented Data Analysis Framework , Proceedings
AIHENP'96 Workshop, Lausanne, Sep. 1996, Nucl.
Inst. & Meth. in Phys. Res. A 389 (1997) 81-86. See
also http://root.cern.ch

[4] Boost libraries. See http://www.boost.org
[5] CLHEP - A Class Library for High Energy Physics. See

http://cern.ch/CLHEP
[6] M. Galassi et al., GNU Scientific Library Reference

Manual - Second Edition, Network Theory Ltd, 2003
[7] F. James, Minuit, CERN Program Library Long Writeup

D506
[8] G. Alverson et al., The IGUANA interactive Graphics

Toolkit with Examples from CMS and D0 , Proceedings
CHEP’01, Beijing, Sep 2001. See also
http://cern.ch/iguana

[9] GCC-XML, the XML output extension to GCC. See
http://www.gccxml.org

[10] D. Duellmann, POOL Project Overview, in this
proceedings.

[11] P. Mato, Using ROOT classes from Python, ROOT
2002 Workshop, October 2002, CERN. See also
http://cern.ch/Gaudi/RootPython

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5MOJT003 ePrint physics/0306033

