

Experience with multi-threaded C++ applications

in the ATLAS DataFlow software

S. Gadomski1, H.P. Beck, C. Haeberli, V. Perez Reale
Laboratory for High Energy Physics, University of Bern, Switzerland

M. Abolins, Y. Ermoline, R. Hauser
Michigan State University, Department of Physics and Astronomy, East Lansing, Michigan

A. Dos Anjos, M. Losada Maia
Universidade Federal do Rio de Janeiro, COPPE/EE, Rio de Janeiro

M. Barisonzi2, H. Boterenbrood, P. Jansweijer, G. Kieft, J. Vermeulen
NIKHEF, Amsterdam

M. Beretta, M.L. Ferrer, W. Liu
Laboratori Nazionali di Frascati dell’ I.N.FN., Fracasti

R. Blair, J. Dawson, J. Schlereth
Argonne National Laboratory, Argonne, Illinois

J. Bogaerts, M. Ciobotaru, E. Palencia Cortezon, B. DiGirolamo, R. Dobinson, D. Francis, S. Gameiro,
P. Golonka, B. Gorini, M. Gruwe, G. Lehmann, S. Haas, M. Joos, E. Knezo, T. Maeno, L. Mapelli,
B. Martin, R. McLaren, C. Meirosu, G. Mornacchi, I. Papadopoulos, J. Petersen, P. de Matos Lopes Pinto,
D. Prigent, R. Spiwoks, S. Stancu, L. Tremblet, P. Werner,
CERN, Geneva, Switzerland

D. Botterill, F. Wickens
Rutherford Appleton Laboratory, Chilton, Didcot

R. Cranfield, G. Crone
Department of Physics and Astronomy, University College London, London

B. Green, A. Misiejuk, J. Strong
Department of Physics, Royal Holloway and Bedford New College, University of London, Egham

Y. Hasegawa
Department of Physics, Faculty of Science, Shinshu University, Matsumoto

R. Hughes-Jones
Department of Physics and Astronomy, University of Manchester, Manchester

A. Kaczmarska, K. Korcyl, M. Zurek
Henryk Niewodniczanski Institute of Nuclear Physics, Cracow

A. Kugel, M. Müller, C. Hinkelbein, M. Yu,
Lehrstuhl für Informatik V, Universität Mannheim, Mannheim

A. Lankford, R. Mommsen,
University of California, Irvine, California

M. LeVine,
Brookhaven National Laboratory (BNL), Upton, New York

Y. Nagasaka,
Hiroshima Institute of Technology, Hiroshima

K. Nakayoshi, Y. Yasu,
KEK, High Energy Accelerator Research Organisation, Tsukuba

M. Shimojima,
Department of Electrical Engineering, Nagasaki Institute of Applied Science, Nagasaki

G. Zobernig,
Department of Physics, University of Wisconsin, Madison, Wisconsin

1 on leave from INP Cracow, Poland
2 also from Universiteit Twente, Enschede, Netherlands

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOGT011 ePrint physics/0306113

The DataFlow is sub-system of the ATLAS data acquisition responsible for the reception, buffering and subsequent movement of partial
and full event data to the higher level triggers: Level 2 and Event Filter. The design of the software is based on OO methodology and its
implementation relies heavily on the use of posix threads and the Standard Template Library. This article presents our experience with
Linux, posix threads and the Standard Template Library in the real time environment of the ATLAS data flow.

1. INTRODUCTION

The DataFlow system is a part of ATLAS Trigger/DAQ.
The system is responsible for reception, buffering and
movement of event data to and from the high level triggers
(HLT), known in ATLAS as the Level 2 Trigger (LVL2) and
the Event Filter (EF). The system consists of software
applications, which run on standard Linux PCs connected to
standard Ethernet networks. The overview of the DataFlow
project is given in [1]. The networking aspects of the
projects are presented in [2]. In this article we describe the
experience with the Data Flow software.

 The DataFlow software applications are written in C++.
The applications have different functions, described in more
detail in [1]. All the applications also have to perform certain
common tasks such as:

- sending data over network and receiving it,
- accessing configuration data base,
- providing monitoring information,
- executing state transitions,
- reporting errors.

 These and other functions are provided by an OO
framework, on which all the DataFlow applications are
based.

All the applications are implemented using multiple
threads of execution. Threads are “light weight processes”,
which are scheduled separately by the operating system, but
share the resources of the executable, in particular the
memory. The use of multiple threads enables a more
effective use of CPU by DataFlow applications. Data
transfers imply latency. While one of the threads waits for
data, other threads can use the CPU to perform other tasks.

Several functions of the framework, such as monitoring,
are also implemented as separate threads. These “service”
threads do not take large fractions of CPU time, but they are
ready to take action responding to an external request.
Threads can also be activated at regular (and configurable)
intervals, performing tasks related to time outs, most notably
corrective actions in case of lost messages .

The DataFlow applications need to be able to work with
“unsafe” connection-less protocols such as UDP/IP. Using
“safe” protocols, such as TCP/IP can penalize the
performance of the DataFlow system. In many cases it is
better to deal with potential packet loss at the application
level, rather then in the network protocol. Robustness
against packet loss is required for DataFlow applications.

The Standard Template Library (STL) [3] has become
widely used in C++ programs. The library provides
commonly used data structures such as vectors, lists and
maps. The DataFlow software is using the containers of the
STL library.

The current prototype of the DataFlow software was
developed in 2001-2002. Since Autumn 2002 the
performance of the software is measured systematically. The
measurement program has validated the concepts used in the
DataFlow software for the Technical Design Review of the
ATLAS Trigger and DAQ, which is due in June 2003. The
measurements have led to occasional optimizations of the
software.

The prototype DataFlow software will also be deployed as
the DAQ during beam test of ATLAS detector prototypes
starting in May 2003. Preparation of the software for the
beam test required several improvements in stability and
ease of deployment of the software.

Some lessons learned during the development and testing
of DataFlow software are described in Section 2. We offer
our conclusions in Section 3.

2. EXPERIENCE

In this section we present problems, which were
encountered during development and testing of the
DataFlow software, as well as the adopted solutions. In order
to explain the problems we briefly present the use of threads
in selected DataFlow applications.

2.1. STL Containers in multi-threaded
applications

The problem with using STL containers in DataFlow
applications was first observed during performance
measurements of the second level trigger Processing Unit
(L2PU). The L2PU application will run the algorithms that
will access event data and produce the LVL2 decision on
each ATLAS event. It is expected that there will be several
hundred PCs running as L2PUs in the ATLAS Trigger/DAQ
system.

An L2PU has a configurable number of "worker threads".
Each worker thread processes one event at a time, asking for
event data when the physics selection algorithm needs it.

Having several worker threads compensates for the
latency of obtaining event data. While one worker thread
waits for data, other threads can use the CPU to process their
events. A schematic diagram of the L2PU threads is shown
in Fig.1.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOGT011 ePrint physics/0306113

During tests of L2PU it was discovered that increasing the
number of threads did not improve the performance as it was
expected. The worker threads did not seem to run truly
independently of each other. A diagnostic tool called Visual
Threads [4] was helpful in diagnosing the problem. The tool
uses instrumented threads library. It enables to trace the
switching of context and to understand when threads can
block each other. The analysis done on the L2PU has shown
that threads were blocked when accessing STL containers.
By default all the containers, which are created and used in
different threads, share one common memory pool.
Simultaneous access to the same memory by different
threads could lead to corruption. The STL protects against
that by “mutex locks”. As the name suggests a mutex lock
provides mutual exclusion. Only one thread can access the
memory pool at any given time. This can cause a
performance penalty because threads can be blocked when
accessing STL containers. Because the memory pool is
global per executable, even the most local STL containers,
which are created and used in one thread, can activate the
lock and cause contention between threads.

The problem can be avoided by having separate memory
pools for STL containers used in different threads. When an
STL container is declared it is possible to choose the
memory allocator used by the library.

With some compilers it is also possible to change the
allocator globally, for all the containers at once, using a
compiler flag. The latter solution could be quickly applied to
the L2PU application in order to verify the hypothesis
presented here. Using the "pthread" allocator, applied
globally to all containers, brought a significant improvement
of performance in the L2PU. The speed of the application
could be improved by as much as a factor of four under
some conditions.

Using the memory pool of STL allocated per thread can
lead to a problem when STL containers are created in one
thread and deleted in another one. This way the amount of

available memory is constantly shifted from one thread to
another, which may not be sustainable in the long run.

The most practical solution to this problem is to use a
special memory allocator, which can track the "migration" of
memory between threads. An allocator like that can take
corrective actions, allocating memory in one thread and
freeing it in another. For performance reasons this corrective
action is undertaken once in a while, i.e. not every time an
STL container is created or deleted. This allows an effective
use of the STL containers at high rates.

The solution with a dedicated allocator is now being
implemented in the DataFlow software. All the STL
containers need to be revisited. Declarations of the
containers that are used at high rates need to be changed.
However, it is already understood that a solution exists. The
STL containers can be used in multi-threaded applications
without causing loss of performance.

2.2. Controlling the network traffic

Sub Farm Interface (SFI) is the DataFlow application
responsible for event building in ATLAS. An event accepted
by the second level trigger is assigned to an SFI. The SFI is
given the LVL1 ID of the event. The task of the SFI is to
ask for data from a number of sources and to build a
complete event. Depending on an option chosen by ATLAS
the SFI may receive data from around 200 or from around
1600 sources connected to the network (see [1] for more
details). Once the SFI has a complete event, the event data
can be deleted from Readout Buffers. The event can be kept
by the SFI and can be handed over to the Event Filter farm
for further processing.

In order to perform its tasks effectively the SFI has
separate threads for the following tasks:

- requesting data from the data sources,
- receiving the data,
- assembling events from fragments,
- sending events to the event filter.
 The four mentioned threads all need to work at a high

rate. These threads are shown schematically in Fig.2.
In addition the SFI has other threads, which do not operate

at high rate, and which take care of such aspects as
operational monitoring, monitoring of the event data or
initiating corrective action if data is missing for some
unfinished events.

The design of SFI is a result of optimizations. It was
driven by performance measurements of a fully functional
prototype performing all the necessary I/O. The environment
on the measurement test bed was identical to that in which
the SFI will be working in ATLAS. The network transaction
needed to obtain data and to ship it out were like expected in
the full system.

The SFI can reach the optimum performance because it
controls the flow of messages to which it is exposed. Data
fragments from hundreds of sources have to arrive to the
same input of an SFI. This brings the risk of collision.

Worker
Thread

Worker
Thread

Worker
Thread

Input
Thread

RoI Data
Requests

RoI Data

L2SV

ROS‘s

LVL2
Decision

L2PULVL1 Result

Worker
Thread

pROS
LVL2
Result

Assemble RoI Data

Add to Event Queue

Get next Event from Queue

If Accept send Result

Run LVL2 Selection code

Send Decision

Request data + wait

RoI Data

RoI Data

R
oI

 D
at

a

Continue Selection code

If complete restart Worker

Worker
Thread

Worker
Thread

Worker
Thread

Input
Thread

RoI Data
Requests

RoI Data

L2SV

ROS‘sROS‘s

LVL2
Decision

L2PULVL1 Result

Worker
Thread

pROS
LVL2
Result

Assemble RoI Data

Add to Event Queue

Get next Event from Queue

If Accept send Result

Run LVL2 Selection code

Send Decision

Request data + wait

RoI Data

RoI Data

R
oI

 D
at

a

Continue Selection code

If complete restart Worker

Fig.1 Use of threads in the second level trigger
processing unit (L2PU). Multiple Worker Threads run
event selection algorithms and request the event data
from ROSes.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOGT011 ePrint physics/0306113

The messages containing event fragments can be lost in
queues at the ports of switches. It was also observed that
messages can be lost in the kernel buffer of the destination
computer if the application can not read them fast enough.

The SFI is robust against packet loss. Missing fragments
of events are asked for again. However re-asking causes
performance loss and should be avoided. The only effective
way to achieve this is by controlling the flow in the SFI
itself. The SFI limits the number of requests for data that are
outstanding at any given time. This gives an automatic
adjustment of data rate, compensating for all possible
limitations of bandwidth in the network. Thanks to this
mechanism the SFI can receive data at a rate that is a large
fraction of the network line speed.

Other experience accumulated during the development
and optimization of the SFI was multi-fold. The observations
related to STL containers, described in the previous section,
were confirmed with the SFI application. More
improvements were obtained by avoiding:

- system calls,
- creations of objects,
- contention of threads related to sharing objects.

Another improvement was reached by reducing the
frequency of thread switching. The thread that assembles
event fragments, as well as the thread requesting data, have
outstanding work which depends on the incoming fragments.
It is better to activate them less often and to let them process
more fragments (or send more requests) at a time. This issue
was not predicted in advance, but a significant performance
gain of 14% was reached by reducing the frequency of
thread switching.

Fig.3 shows the performance of the SFI when doing input
only. The size of the events was varied. The messages
containing event data were limited in size to a single
Ethernet frame, around 1.4 kB. The total message rate
(outgoing requests for data + icoming fragments) was
reaching 130 kHz. With full frames the data was collected at
79 MB/s.

When data sources send multi-frame messages the SFI can
sustain input data rate up to 95 MB/s, which is 76% of the
bandwidth of the gigabit Ethernet. When doing simultaneous
input and output the SFI can reach the speed of 70 MB/s.
The performance is limited by the speed of the CPU. The
results presented here were obtained on a 2.4 GHz PC.

The optimization of the complete application done in a
realistic environment has enabled to reach a performance
sufficient for ATLAS data flow.

2.3. Scheduling of threads in Linux

A problem with thread scheduling arose in the Readout
System (ROS) application. The ROS receives requests for
data from the L2PU and from the SFI. In response the ROS
collects data from readout buffers (ROB) and sends it to the
requesting process over network.

Both the ROS and the SFI collect data from several
sources. The requirement on the total data rate is the same.
However other requirements are very different between the
ROS and the SFI, as illustrated in table 1.

Requirement ROS SFI

Request
Rate

24 kHz LVL2
3 kHz EB

50 Hz

Data to send
per request

2 kB LVL2
8 kB EB

1.5 MB

Number of data
sources per request

˜2 (LVL2 average)
12 EB

200 to
1600

Total data rate 72 MB/s 75 MB/s

Table 1. Requirements on ROS and SFI in the ATLAS
DataFlow system. For the ROS the requirements from the
second level trigger (data transfers to L2PUs) and from the
Event Building (data transfers to SFIs) are shown separately.

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5

Event Size (MB)

B
an

d
w

id
th

 (
M

B
/s

)

0

20

40

60

80

100

120

140

M
es

sa
g

e
R

at
e

(k
H

z)

Bandwidth

Message Rate

Fig.3 Performance of the SFI. Bandwidth and
total message rate (incoming + outgoing) are
shown as a function of the event size.

Assembly Thread

Input Thread Request Thread

Event Handler

Data
Requests

Event
Data

Event
Assigns

DFM
End
of

Event

SFI

R
eask Frag

m
en

t ID
s

Assigns

ROSFragments
Events

EF

Full Event

ROS

Assembly Thread

Input Thread Request Thread

Event Handler

Data
Requests

Event
Data

Event
Assigns

DFM
End
of

Event

SFI

R
eask Frag

m
en

t ID
s

Assigns

ROSFragments
Events

EF

Full Event

ROS

Fig. 2 Use of threads in the sub-farm interface (SFI).
Delegating work from the Input Thread to the others
improves performance.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4MOGT011 ePrint physics/0306113

The use of threads in the ROS is different with respect to

the SFI, resembling more the L2PU. There is a configurable
number of request handlers, each serving one request for
data at a time. The threads of the ROS are shown
schematically in Fig.4.

A request thread needs to take action after data from
ROBs appears in memory buffers. As the ROS is designed to
work without interrupts, the only way a threads can know
that data is ready is by checking a memory location. In order
not to block the CPU by polling in a loop, a yield()
instruction is used. This instruction returns control from a
thread. A problem with this approach was discovered during
testing of the ROS. It was expected that latency of obtaining
data, which was simulated in the measurements, can be
compensated by increasing the number of worker threads.

For a sufficiently large number of threads one of them
would always have data available and the CPU would never
be idle. Increasing the number of request threads did not
bring the expected increase of performance, as one can
observe in Fig.5 (lower curve).

An investigation uncovered that the operating system was
switching only between some worker threads, not giving
context to other threads for a while. It was understood that a
thread in which yield() was called could be put on hold
for a time up to 100 ms. The thread scheduling algorithm
was reset with the frequency given by the HZ parameter, by
default 100 Hz.

A remedy is to apply a kernel patch. For CERN Red Hat
Linux 7.3 there exists an official patch that changes the
scheduling policy [5]. After a patch like that is applied the
scheduling is done in a round-robin fashion, not excluding
threads that have called yield(). This gives the expected
performance of the ROS. The improvement of performance
introduced by the patch is shown in Fig.5. The ROS running
on a PC with the patched kernel meets the requirements of
the ATLAS DataFlow system

3. CONCLUSIONS

The DataFlow subsystem of the ATLAS DAQ has a
prototype implementation based on multi threaded C++
programs running on Linux PCs and exchanging data via
gigabit Ethernet network. The performance of the prototype
will be documented in the Technical Design Report
published in June 2003.

During the development and testing of the prototype
applications several technical problems, mostly related to
having many threads, were discovered, understood and
solved. The DataFlow system based on the chosen approach
can meet performance requirements of the ATLAS
experiment.

Acknowledgments

We wish to thank the ATLAS TDAQ Online Software
group for providing a system and useful tools to control,
configure and operate large-scale distributed testbed setups.

References

[1] G. Lehman et al., “The DataFlow system of the
ATLAS Trigger and DAQ”, these proceedings.

[2] S. Stancu et al., “The use of Ethernet in the DataFlow
of the ATLAS Trigger and DAQ”, these proceedings.

[3] N.M.Josuttis, “The C++ Standard Library”, Addison-
Wesley, 1999.

[4] Visual Threads software, Hewlett Packard,
http://h18000.www1.hp.com/products/software/v
isualthreads/index.html.

[5] Kernel patch to change scheduling in CERN Red Hat
Linux distribution, version 7.3 -
linux_2.4.18_18_sched.yield.patch

= Thread

= Linux Scheduler

RobIns

= Process

Requests
(L2, EB,
Delete)

Request Queue

Request Handlers

Control, error

Trigger

= Thread

= Linux Scheduler

RobIns

= Process

Requests
(L2, EB,
Delete)

Request Queue

Request Handlers

Control, error

Trigger

Fig.4. Use of threads in the Readout System
(ROS). Multiple Request Handler threads
obtain data from RobIns.

request rate vs. # request handlers

0

20

40

60

80

100

0 2 4 6 8 10 12

request handlers

re
qu

es
t r

at
e

(k
H

z)

patch

no patch

Fig. 5. Performance of the ROS with and without the
kernel patch. The performance is measured by the
request rate that can be sustained. With the kernel patch
the ROS can compensate for latency of obtaining data by
having more request handlers.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5MOGT011 ePrint physics/0306113

