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The DataFlow is sub-system of the ATLAS data acquisition responsible for the reception, buffering and subsequent movement of partial 
and full event data to the higher level triggers: Level 2 and Event Filter. The design of the software is based on OO methodology and its 
implementation relies heavily on the use of posix threads and the Standard Template Library. This article presents our experience with 
Linux, posix threads and the Standard Template Library in the real time environment of the ATLAS data flow. 

 
 
 

1. INTRODUCTION 

The DataFlow system is a part of ATLAS Trigger/DAQ. 
The system is responsible for reception, buffering and 
movement of event data to and from the high level triggers 
(HLT), known in ATLAS as the Level 2 Trigger (LVL2) and 
the Event Filter (EF). The system consists of software 
applications, which run on standard Linux PCs connected to 
standard Ethernet networks. The overview of the DataFlow 
project is given in [1]. The networking aspects of the 
projects are presented in [2]. In this article we describe the 
experience with the Data Flow software. 

 The DataFlow software applications are written in C++. 
The applications have different functions, described in more 
detail in [1]. All the applications also have to perform certain 
common tasks such as: 

- sending data over network and receiving it, 
- accessing configuration data base, 
- providing monitoring information, 
- executing state transitions, 
- reporting errors. 

 These and other functions are provided by an OO 
framework, on which all the DataFlow applications are 
based. 

All the applications are implemented using multiple 
threads of execution. Threads are “light weight processes”, 
which are scheduled separately by the operating system, but 
share the resources of the executable, in particular the 
memory. The use of multiple threads enables a more 
effective use of CPU by DataFlow applications. Data 
transfers imply latency. While one of the threads waits for 
data, other threads can use the CPU to perform other tasks.   

Several functions of the framework, such as monitoring, 
are also implemented as separate threads. These “service” 
threads do not take large fractions of CPU time, but they are 
ready to take action responding to an external request. 
Threads can also be activated at regular (and configurable) 
intervals, performing tasks related to time outs, most notably 
corrective actions in case of lost messages .  

The DataFlow applications need to be able to work with 
“unsafe” connection-less protocols such as UDP/IP. Using 
“safe” protocols, such as TCP/IP can penalize the 
performance of the DataFlow system. In many cases it is 
better to deal with potential packet loss at the application 
level, rather then in the network protocol. Robustness 
against packet loss is required for DataFlow applications. 

The Standard Template Library (STL) [3] has become 
widely used in C++ programs. The library provides 
commonly used data structures such as vectors, lists and 
maps. The DataFlow software is using the containers of the 
STL library. 

The current prototype of the DataFlow software was 
developed in 2001-2002. Since Autumn 2002 the 
performance of the software is measured systematically. The 
measurement program has validated the concepts used in the 
DataFlow software for the Technical Design Review of the 
ATLAS Trigger and DAQ, which is due in June 2003. The 
measurements have led to occasional optimizations of the 
software.  

The prototype DataFlow software will also be deployed as 
the DAQ during beam test of ATLAS detector prototypes 
starting in May 2003. Preparation of the software for the 
beam test required several improvements in stability and 
ease of deployment of the software.  

Some lessons learned during the development and testing 
of DataFlow software are described in Section 2. We offer 
our conclusions in Section 3.  

2. EXPERIENCE 

In this section we present problems, which were 
encountered during development and testing of the 
DataFlow software, as well as the adopted solutions. In order 
to explain the problems we briefly present the use of threads 
in selected DataFlow applications. 

2.1. STL Containers in multi-threaded 
applications 

The problem with using STL containers in DataFlow 
applications was first observed during performance 
measurements of the second level trigger Processing Unit 
(L2PU). The L2PU application will run the algorithms that 
will access event data and produce the LVL2 decision on 
each ATLAS event. It is expected that there will be several 
hundred PCs running as L2PUs in the ATLAS Trigger/DAQ 
system.  

An L2PU has a configurable number of "worker threads". 
Each worker thread processes one event at a time, asking for 
event data when the physics selection algorithm needs it. 

Having several worker threads compensates for the 
latency of obtaining event data. While one worker thread 
waits for data, other threads can use the CPU to process their 
events. A schematic diagram of the L2PU threads is shown 
in Fig.1.  

 
 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOGT011 ePrint physics/0306113



 
 

 
 

 

 
 

During tests of L2PU it was discovered that increasing the 
number of threads did not improve the performance as it was 
expected. The worker threads did not seem to run truly 
independently of each other. A diagnostic tool called Visual 
Threads [4] was helpful in diagnosing the problem. The tool 
uses instrumented threads library. It enables to trace the 
switching of context and to understand when threads can 
block each other. The analysis done on the L2PU has shown 
that threads were blocked when accessing STL containers. 
By default all the containers, which are created and used in 
different threads, share one common memory pool. 
Simultaneous access to the same memory by different 
threads could lead to corruption. The STL protects against 
that by “mutex locks”. As the name suggests a mutex lock 
provides mutual exclusion. Only one thread can access the 
memory pool at any given time. This can cause a 
performance penalty because threads can be blocked when 
accessing STL containers. Because the memory pool is 
global per executable, even the most local STL containers, 
which are created and used in one thread, can activate the 
lock and cause contention between threads. 

The problem can be avoided by having separate memory 
pools for STL containers used in different threads. When an 
STL container is declared it is possible to choose the 
memory allocator used by the library.  

With some compilers it is also possible to change the 
allocator globally, for all the containers at once, using a 
compiler flag. The latter solution could be quickly applied to 
the L2PU application in order to verify the hypothesis 
presented here. Using the "pthread" allocator, applied 
globally to all containers, brought a significant improvement 
of performance in the L2PU. The speed of the application 
could be improved by as much as a factor of four under 
some conditions.  

Using the memory pool of STL allocated per thread can 
lead to a problem when STL containers are created in one 
thread and deleted in another one. This way the amount of 

available memory is constantly shifted from one thread to 
another, which may not be sustainable in the long run.  

The most practical solution to this problem is to use a 
special memory allocator, which can track the "migration" of 
memory between threads. An allocator like that can take 
corrective actions, allocating memory in one thread and 
freeing it in another. For performance reasons this corrective 
action is undertaken once in a while, i.e. not every time an 
STL container is created or deleted. This allows an effective 
use of the STL containers at high rates.  

The solution with a dedicated allocator is now being 
implemented in the DataFlow software. All the STL 
containers need to be revisited. Declarations of the 
containers that are used at high rates need to be changed. 
However, it is already understood that a solution exists. The 
STL containers can be used in multi-threaded applications 
without causing loss of performance. 

2.2. Controlling the network traffic 

Sub Farm Interface (SFI) is the DataFlow application 
responsible for event building in ATLAS. An event accepted 
by the second level trigger is assigned to an SFI. The SFI is 
given the LVL1 ID of  the event. The task of the SFI is to 
ask for data from a number of sources and to build a 
complete event. Depending on an option chosen by ATLAS 
the SFI may receive data from around 200 or from around 
1600 sources connected to the network (see [1] for more 
details). Once the SFI has a complete event, the event data 
can be deleted from Readout Buffers. The event can be kept 
by the SFI and can be handed over to the Event Filter farm 
for further processing. 

In order to perform its tasks effectively the SFI has 
separate threads for the following tasks: 

- requesting data from the data sources, 
- receiving the data, 
- assembling events from fragments, 
- sending events to the event filter. 
 The four mentioned threads all need to work at a high 

rate. These threads are shown schematically in Fig.2. 
In addition the SFI has other threads, which do not operate 

at high rate, and which take care of such aspects as 
operational monitoring, monitoring of the event data or 
initiating corrective action if data is missing for some 
unfinished events. 

The design of SFI is a result of optimizations. It was 
driven by performance measurements of a fully functional 
prototype performing all the necessary I/O. The environment 
on the measurement test bed was identical to that in which 
the SFI will be working in ATLAS. The network transaction 
needed to obtain data and to ship it out were like expected in 
the full system. 

The SFI can reach the optimum performance because it 
controls the flow of messages to which it is exposed. Data 
fragments from hundreds of sources have to arrive to the 
same input of an SFI. This brings the risk of collision.  
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Fig.1 Use of threads in the second level trigger 
processing unit (L2PU). Multiple Worker Threads run 
event selection algorithms and request the event data 
from ROSes. 
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The messages containing event fragments can be lost in 
queues at the ports of switches. It was also observed that 
messages can be lost in the kernel buffer of the destination 
computer if the application can not read them fast enough.  

The SFI is robust against packet loss. Missing fragments 
of events are asked for again. However re-asking causes 
performance loss and should be avoided. The only effective 
way to achieve this is by controlling the flow in the SFI 
itself. The SFI limits the number of requests for data that are 
outstanding at any given time. This gives an automatic 
adjustment of data rate, compensating for all possible 
limitations of bandwidth in the network. Thanks to this 
mechanism the SFI can receive data at a rate that is a large 
fraction of the network line speed. 

Other experience accumulated during the development 
and optimization of the SFI was multi-fold. The observations 
related to STL containers, described in the previous section, 
were confirmed with the SFI application. More 
improvements were obtained by avoiding: 

- system calls,  
- creations of objects, 
- contention of threads related to sharing objects. 

Another improvement was reached by reducing the 
frequency of thread switching. The thread that assembles 
event fragments, as well as the thread requesting data, have 
outstanding work which depends on the incoming fragments. 
It is better to activate them less often and to let them process 
more fragments (or send more requests) at a time. This issue 
was not predicted in advance, but a significant performance 
gain of 14% was reached by reducing the frequency of 
thread switching.  

Fig.3 shows the performance of the SFI when doing input 
only. The size of the events was varied. The messages 
containing event data were limited in size to a single 
Ethernet frame, around 1.4 kB. The total message rate 
(outgoing requests for data + icoming fragments) was 
reaching 130 kHz. With full frames the data was collected at 
79 MB/s.  

  
When data sources send multi-frame messages the SFI can 
sustain input data rate up to 95 MB/s, which is 76% of the 
bandwidth of the gigabit Ethernet. When doing simultaneous 
input and output the SFI can reach the speed of 70 MB/s. 
The performance is limited by the speed of the CPU. The 
results presented here were obtained on a 2.4 GHz PC. 

The optimization of the complete application done in a 
realistic environment has enabled to reach a performance 
sufficient for ATLAS data flow. 

 

2.3. Scheduling of threads in Linux 

A problem with thread scheduling arose in the Readout 
System (ROS) application. The ROS receives requests for 
data from the L2PU and from the SFI. In response the ROS 
collects data from readout buffers (ROB) and sends it to the 
requesting process over network.  

Both the ROS and the SFI collect data from several 
sources. The requirement on the total data rate is the same. 
However other requirements are very different between the 
ROS and the SFI, as illustrated in table 1. 

 
Requirement ROS SFI 

Request 
Rate 

24 kHz LVL2 
3 kHz EB 

50 Hz 
 

Data to send  
per request 

2 kB LVL2  
8 kB EB 

1.5 MB 

Number of data 
sources per request 

˜2 (LVL2 average) 
12 EB 

200 to 
1600 

Total data rate 72 MB/s 75 MB/s 
 
Table 1. Requirements on ROS and SFI in the ATLAS 
DataFlow system. For the ROS the requirements from the 
second level trigger (data transfers to L2PUs) and from the 
Event Building (data transfers to SFIs) are shown separately.  
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Fig.3 Performance of the SFI. Bandwidth and 
total message rate (incoming + outgoing) are 
shown as a function of the event size.  
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Fig. 2 Use of threads in the sub-farm interface (SFI). 
Delegating work from the Input Thread to the others 
improves performance. 
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The use of threads in the ROS is different with respect to 

the SFI, resembling more the L2PU. There is a configurable 
number of request handlers, each serving one request for 
data at a time. The threads of the ROS are shown 
schematically in Fig.4.  

A request thread needs to take action after data from 
ROBs appears in memory buffers. As the ROS is designed to 
work without interrupts, the only way a threads can know 
that data is ready is by checking a memory location. In order 
not to block the CPU by polling in a loop, a yield() 
instruction is used. This instruction returns control from a 
thread. A problem with this approach was discovered during 
testing of the ROS. It was expected that latency of obtaining 
data, which was simulated in the measurements, can be 
compensated by increasing the number of worker threads. 

  

For a sufficiently large number of threads one of them 
would always have data available and the CPU would never 
be idle. Increasing the number of request threads did not 
bring the expected increase of performance, as one can 
observe in Fig.5 (lower curve). 

An investigation uncovered that the operating system was 
switching only between some worker threads, not giving 
context to other threads for a while. It was understood that a 
thread in which  yield() was called could be put on hold 
for a time up to 100 ms. The thread scheduling algorithm 
was reset with the frequency given by the HZ parameter, by 
default 100 Hz.  

A remedy is to apply a kernel patch. For CERN Red Hat 
Linux 7.3 there exists an official patch that changes the 
scheduling policy [5]. After a patch like that is applied the 
scheduling is done in a round-robin fashion, not excluding 
threads that have called yield(). This gives the expected 
performance of the ROS. The improvement of performance 
introduced by the patch is shown in Fig.5. The ROS running 
on a PC with the patched kernel meets the requirements of 
the ATLAS DataFlow system 

3. CONCLUSIONS 

The DataFlow subsystem of the ATLAS DAQ has a 
prototype implementation based on multi threaded C++ 
programs running on Linux PCs and exchanging data via 
gigabit Ethernet network. The performance of the prototype 
will be documented in the Technical Design Report 
published in June 2003. 

During the development and testing of the prototype 
applications several technical problems, mostly related to 
having many threads, were discovered, understood and 
solved. The DataFlow system based on the chosen approach 
can meet performance requirements of the ATLAS 
experiment. 
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Fig.4. Use of threads in the Readout System 
(ROS). Multiple Request Handler threads 
obtain data from RobIns. 
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Fig. 5. Performance of the ROS with and without the 
kernel patch. The performance is measured by the 
request rate that can be sustained. With the kernel patch 
the ROS can compensate for latency of obtaining data by 
having more request handlers. 
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