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XDAQ is a generic data acquisition software environment that emerged from a rich set of of use-cases encountered in the CMS 
experiment. They cover not the deployment for multiple sub-detectors and the operation of different processing and networking 
equipment as well as a distributed collaboration of users with different needs. The use of the software in various application scenarios 
demonstrated the viability of the approach. We discuss two applications, the tracker local DAQ system for front-end commissioning and 
the muon chamber validation system. The description is completed by a brief overview of XDAQ. 

 

1. INTRODUCTION 

Software for data acquisition (DAQ) systems does not 
only comprise the application task, but also requires 
functions to integrate diverse hardware devices for 
configuration and data interchange. With traditional tools 
this can become a cumbersome and time-consuming task. 
Application software that relies on direct use of the device 
driver interface affects program configurability. Some 
devices are accessed through system calls, others rely on 
memory mapping or have special requirements like the 
existence of memory that can be used for DMA operations. 
Support for configuration is dependent on the operating 
system platform. Concurrent use of multiple different 
networking technologies transparently at application level is 
not easily achievable with this approach. Message passing 
libraries, such as MPI [1] provide communication 
abstraction but do merely support the integration of diverse 
technologies. Moreover, different tasks in high-energy 
physics data acquisition show striking similarities although 
the underlying networking and processing devices can be 
entirely different. Recognition of these limitations triggered 
an abstraction from a pure application-oriented view of data 
acquisition. Related projects showed that this direction is 
promising. CODA [2] for example, presents an integrated 
data acquisition environment. Highly portable and feature 
rich, it is, however, limited in terms of integration with other 
systems because of proprietary protocols and formats.  

We approached the problem by filtering out generic 
requirements that are common to various tasks in high-

energy physics [3]. We then established a software product 
line [4], specifically designed for distributed data acquisition 
systems based on the integration of various networking 
devices and commodity computing systems. This suite, 
called XDAQ, includes the generic requirements documents, 
design templates, a software process environment, a 
distributed processing environment and various generic 
software components that can be tailored to a variety of 
application scenarios (see figure 1). Applying the product 
line approach to data acquisition aims, however, at shifting 
the focus from application programming tasks to integration 
tasks, thus speeding up application development and 
obtaining good performance by using well-established and 
tested design patterns. Before we present the use of XDAQ 
in some of the application scenarios of the CMS experiment, 
we outline basic functionalities of the software environment. 

2. XDAQ 

XDAQ is a software product line that has been designed 
[5] to match the diverse requirements of data acquisition 
application scenarios of the CMS experiment. These include 
the central DAQ, sub-detector local DAQ systems for 
commissioning, debugging, configuration, monitoring and 
calibration purposes, test-beam and detector production 
installations as well as design verification and demonstration 
purposes.  

The product line comprises sets of documentation and 
software packages that are generic enough to be used for 
several application scenarios, but as specific as possible to 
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cover aspects that are critical to stable and efficient DAQ 

operation. 
 

Figure 1: Overview of the XDAQ software product line. The 
arrows indicate the work flow of the software process that 
leads to the production of DAQ systems and the extension of 
the product line asset base. 

2.1. Documentation 

The documentation includes besides a description of the 
project environment, design documents, software production 
guidelines, user- and test manuals a generic requirements 
specification. It captures requirements that are common to a 
large set of data acquisition systems, which aim to use 
commodity computing and networking equipment. At 
functional level the requirements cover communication, 
configuration, monitoring and control tasks. In addition, 
various non-functional requirements like performance 
flexibility, maintainability and portability are included. This 
description must be completed by the requirements that are 
specific to a particular application scenario and will lead to 
tailoring of the generic application components that are 
provided with the suite. Some upcoming requirements may 
eventually be found in multiple environments and can 
eventually end up in the product-line requirements 
specification. 

A second important documentation set is the collection of 
companion manuals. It serves as a production guide, telling a 
user how to build a specific data acquisition application by 
using the generic processing environment and the included 
application components. Some manuals focus on tailoring 
aspects, i.e. how to augment the existing components with 
the additional functionalities required by the application. 
Others give insight in using existing functions for the 
necessary programming tasks. 

2.2. Distributed Processing Environment 

XDAQ includes a distributed processing environment 
called “the executive” that provides applications with the 
necessary functions for communication, configuration 
control and monitoring [5, 6]. Written entirely in C++ with 
an emphasis on platform independence, it implements well-
established techniques to provide applications with efficient, 
asynchronous communication. They include the use of 
memory pools for fast and predictable buffer allocation [7], 
support for zero-copy operation [8, 9] and an efficient 
dispatching mechanism for an event-driven processing 
scheme [10]. A copy of the executive process runs on every 
processing node in the data acquisition network. 
Applications are modeled according to a software 
component model [11] and follow a pre-scribed interface. 
They are compiled and the object code is loaded 
dynamically, at run-time into a running executive. Multiple 
application components, even of the same application class 
may coexist in a single executive process. All configuration, 
control and monitoring can be performed through the 
SOAP/http [12] protocol, widely used in Web enabled 
applications [13]. A rich set of data structures, including 
lists, vectors are exportable and can be inspected by clients 
through the executive SOAP services. Histograms are 
mapped to data structures, too. They can also be retrieved 
via SOAP. 

2.3. Generic Event Builder 

In addition to documentation and the executive, XDAQ 
includes a collection of generic applications. They are ready 
for use in various application scenarios with tailoring points 
that allow the adaptation to specific environments. One of 
them is an event builder [14] that consists of three 
collaborating components, a readout unit (RU), a builder 
unit (BU) and an event manager (EVM). The logical 
components and interconnects of the event builder are 
shown schematically in figure 2. A summary of the 
acronyms is given in table 1. Data that are recorded by 
custom readout devices are forwarded to the readout unit 
application. How this is accomplished is described in an 
associated document that is provided with a template 
software module. A RU buffers data from subsequent single 
physics events until it receives a control message to forward 
a specific event fragment to a builder unit. A builder unit 
collects the event fragments belonging to a single collision 
event from all RUs and combines them to a complete event. 
The BU exposes an interface to event data processors, called 
the filter units (FU). This interface can be used to make 
event data persistent or to apply event-filtering algorithms. 
The EVM interfaces to the trigger readout electronics and so 
controls the event building process by mediating control 
messages between RUs and BUs. The interface between 
EVM and trigger readout is documented and template code 
for adaptation to various custom devices is provided. 
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Figure 2: Outline of an event building data acquisition system. 

 

3. APPLICATION SCENARIOS 

We outline two of the various DAQ application scenarios 
found in the CMS experiment. The first one is the silicon 
microstrip detector commissioning of the tracker sub-
detector. The second use case is the test and validation of the 
muon chambers. The system overviews include descriptions 
of the software and hardware subsystems, including the 
interconnection technologies.  

Table 1: List of used acronyms. 
Acronym Description 
BCN Builder Control Network, a logical 

network used to communicate requests 
for event data from BU to EVM. 

BDN Builder Data Network, logical network 
used to send event data from RU to BU 

BU Builder Unit, hardware/software sub-
system to collect event data from RUs 

DCS Detector Control System, software 
system to control/monitor high and low 
voltages as well as various 
environmental measurement values 

DSN DAQ Service Network , logical network 
to carry run control and DCS messages  

EVM Event Manager, hardware/software 
subsystem to mediate trigger 
information for readout and event 

building purposes as well as to control 
the event building process 

FEC Front-End Controller, mediates control 
information between custom front-end 
devices, the DCS or run-
control/monitor system 

FED Front-End Driver, custom devices to 
read data from the detector elements 

FFN Filter Farm Network , logical network 
transports event data from BUs to FUs 

FRL Front-End Readout Link , interconnect 
to read event data from FED into a RU. 

FU Filter Unit, hardware/software sub-
system to process and store event data 

LTC Local Trigger Controller, subsystem 
for reading trigger information and for 
controlling the trigger. 

RCMS Run Control/Monitor System, software 
subsystem to configure, control and 
monitor the DAQ system 

RCN Readout Control Network , logical 
network to transport control 
information for tagging events in a RU 
and for forwarding the data to BUs 

RU Readout Unit, hardware/software sub-
system for transient storage of event 
data read from one or more FEDs 
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3.1. TRACKER COMMISSIONING 

The CMS tracker [15] comprises silicon microstrip 
detectors [16] that are read out via an analog optical link 
connected to the analog to digital converters of the FED. The 
control commands for the front-end chips, together with the 
clock and level 1 trigger, are propagated to the detectors 
through a proprietary token-ring network. This task is 
carried out by a front-end controller (FEC) interacting with 
several communication and control units. Commissioning of 
detectors is a dedicated data acquisition task including the 
communication channel described above. For example, 
timing calibration is required, because the trigger is 
propagated sequentially along the ring to the detectors and 
the digitization time depends on the fiber lengths to the 
FEDs. Additional calibration tasks include pulse shape 
adjustment, optical link gain setting and front-end gain 
calibration. Test setups include slow control facilities, such 
as thermistors and I2C driven humidity probes, and HV/LV 
control, which are driven by XDAQ applications. For this 
purpose, a local data acquisition system that supports the 
calibration loop process in addition to configuration and 
control operations must be available. A high-level diagram 
of the system in operation is shown in Figure 3. Subsystem 
implementations are listed in Table 2. XDAQ together with 
generic event builder components has been successfully used 
to implement the system described above. Additional 
specialized software components were developed to 
interface to detector specific electronics and various 
persistent data storage technologies. On-line visualization 
facilities were implemented with Java Analysis Studio [17] 
and interfaced to the system through the SOAP messaging 
system. The implementation of the system took 4 man 
months. Flexibility and scalability of XDAQ was 
demonstrated by its use in different configurations. It was 
possible to transfer an existing small setup from PSI (Zurich, 
Switzerland) to tracker subsystem (rod and petal) tests 
without modifications. This system was easily transferred to 
a testbeam environment at CERN that comprised different 
computer resources. This setup comprised in total 8 
computers: one for the EVM, three for the FUs, one for the 
BU, one for the RU (hosting three RU applications), one for 
the FEC and one for run control/detector control. 
Commissioning of the new system took 2 hours as opposed 
to 30 hours with previous systems. At a rate of 2000 events 
per spill (500 Hz with an average event size of 20 Kbytes), a 
maximum data throughput of 100 Mbit/s was achieved, 
which corresponds to the available Fast Ethernet capabilities 
between the RU and BU subsystems. Recently, an upgrade 
to Gigabit Ethernet has been performed, yielding a 
throughput of 71 Mbytes/sec for the data acquired during 
one spill. Operation periods spanned five days of continuous 
and uninterrupted data taking resulting in around 600 Gbytes 
of data produced for analysis. Novice users were able to 
operate and re-configure the distributed system after a 
training of approximately 1 hour by themselves. In particular 
the application of configuration changes to re-distribute 

processing tasks to multiple computers was achieved without 
further assistance. 
Figure 3: Overview of the tracker commissioning system 

 

Table 2: Subsystem/interconnect implementation 

Subsystem Implementation 
BCN Fast Ethernet (I2O binary messages) 
BDN Fast Ethernet (I2O binary messages) 
BU Intel based PC (Linux) 
DCS Custom (XDAQ based applications) 
DSN Fast Ethernet (SOAP/http) 
EVM Intel based PC (Linux) 
FEC Intel based PC (Linux) 
FED Custom PCI cards 
FFN Fast Ethernet (I2O binary messages) 
FRL PCI bus 
FU Intel based PC (Linux) 
LTC Custom PCI card 
RCMS Java based (xdaqWin, JAXM) 
RCN Fast Ethernet (I2O binary messages) 
RU Intel based PC (Linux) 

3.2. MUON Chamber Validation 

The 250 chambers that make up the muon barrel 
spectrometer [18] need to be tes ted with cosmic rays once 
before they are shipped to CERN and once when they arrive. 
Tests with muon beams at high data rates together with 
coupling to other subdetectors are also necessary to validate 
the detector behavior under realistic conditions. The 
observables include occupancy of detector channels for 
determining the particle hits, the drift time and the response 
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to dedicated test pulse events. A data acquisition system had 
to be put in place to perform these tasks. XDAQ was used as 
the generic platform to implement this system. As outlined 
in Figure 4, the software required customization of three 
parts, the local trigger controller (LTC), readout of custom 
electronics through the VME bus and interfacing to a data 
storage/analysis backend. For the acquisition task, the 
XDAQ generic event builder components were used. Run 
control was implemented by a prototype system that served 
as a study environment for the CMS experiment run control 
system [19]. As opposed to the tracker commissioning slow 
control was performed by a separate, Windows based 
system. A similar setup was used during a test period for the 
Gamma Irradiation Facility at CERN. In this case, a muon 
chamber was coupled to a resistive plate chamber (RPC) 
detector and a beam ionization chamber to verify the 
simultaneous response of the RPC and muon chambers. The 
update of the existing system went smoothly. As a result of 
this project, several new requirements were identified, 
mainly covering configuration, control and monitoring. 
Hardware platform heterogeneity (different bus systems, 
byte ordering and data alignment rules), as well as the 
presence of two different operating system platforms (Linux 
and VxWorks), posed a challenge to the interoperability 
among the system components. The supported platforms 
included PowerPC based VME processors running the 
VxWorks real-time operating system, and Intel based 
personal computers with both Linux and VxWorks.  

 
Table 2: Subsystem implementation  
 
The provided abstraction fitted the need to switch between 

processor and operating system types without additional 
work. The required event rate of 10 kHz and the peak output 
of 4 Mbytes/sec were well absorbed by the hardware (PCs, 

VME CPUs and Fast Ethernet network) and software 
installation in place. The high variance of the event sizes 
stressed the buffer management system of XDAQ. Stable 
operation under these conditions confirmed the robustness of 
the design. Uptime measured over two weeks was 60%, 
including penalties from changing hardware configurations. 
From the initial intent to create the system to its completion, 
including the learning phase, six man months were invested. 
A system developed from scratch in the same time scale 
would not have provided the seamless integration with later 

appearing components (e.g. silicon beam telescope) and the 
ability to efficiently carry out modifications and 
configuration changes. Through this experience, confidence 
has been gained that the proposed design of the software 
infrastructure can fulfill the diverse functional DAQ 
requirements of the experiment under design. 

 

Figure 4: Overview of the Muon validation system. 

4. SUMMARY 

In this paper we outlined two application scenarios of 
XDAQ in the CMS experiment. The creation of DAQ 
systems for the tracker commissioning and the muon 
chamber validation tasks were vital to ensure that the online 
software infrastructure under design and implementation 
eventually meets the experiments requirements. XDAQ 
supports DAQ systems that aim to use commodity 
computing and networking equipment. It is also evaluated 
for use in the experiment’s central DAQ system that favors 
this design choice. Performance and scalability studies for 
the main DAQ system are currently done [20]. The 
preliminary results from these studies show that the 
performance of the software matches well the requirements 
[21, section 2]. 

Subsystem Implementation 
BCN Fast Ethernet (I2O binary messages) 
BDN Fast Ethernet (I2O binary messages) 
BU Intel based PC (Linux) 
DSN Fast Ethernet (SOAP/http) 
EVM Intel based PC (VxWorks) 
FED Custom VME cards 
FRL VME bus 
LTC Custom PCI card 
RCMS Java application (CMS prototype) 
RCN Fast Ethernet (I2O b inary messages) 
RU Intel based PC (Linux and VxWorks) 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5MOGT008 ePrint hep-ex/0305076



 
 

5. REFERENCES 

[1] M. Snir, S. Otto, S Huss-Lederman, D. Walker, J. 
Dongarra, “MPI: The Complete Reference”, The MIT 
Press, 55 Hayward Street, Cambridge, MA 02142, USA, 
ISBN 95-80471, 1995. 

[2]  W.A. Watson, “CODA: A Scalable, Distributed Data 
Acquisition System”, Nuclear Science, IEEE 
Transactions on , 41(1):61-68, 1994. See also 
http://coda.jlab.org 

[3] J. Gutleber, S. Murray, L. Orsini, “Towards a 
Homogeneous Architecture for High-Energy Physics 
Data Acquisition Systems”, Comp. Phys. Comm., 
Elsevier NH, cpc2578, 2003, in print. 

[4] P. Clements, L. Northrop, “Software Product Lines”, 
Addison-Wesley 2002, ISBN 0-201-70332-7 

[5] J. Gutleber and L. Orsini, “Software Architecture for 
Processing Clusters based on I2O”, Cluster Computing, 
the Journal of Networks, Software and Applications, 
Kluwer Academic Publishers, 5(1):55-65, 2002 

[6] J. Gutleber et al., Clustered Data Acquisition for the 
CMS experiment, Computing in High Energy and 
Nuclear Physics, Beijing, China, September 3-7 2001, 
Science press, pp. 601-605 

[7] R.M. Fujimoto and K.S. Panesar, “Buffer management 
in shared-Memory Time Warp Systems”, ACM 
SIGSIM Simulation Digest, 25(1):149-156, 1995 

[8] “Network Protocol Toolkit, User’s Guide V 5.4”, 
edition 1, Part # DOC-12820-ZD-03, Wind River 
systems, Inc., 500 Wind River Way, Alameda, CA 
94501-1153, USA, July 7, 1999 

[9] M. Thadani and Khalidi, “An efficient zero -copy I/O 
framework for UNIX”, Technical Report, SMLI TR95 -
39, Sun Microsystems Lab, Inc., May 1995 

[10] B.N. Bershad et al., “Extensibility, Safety and 
Performance in the SPIN Operating System”, in Proc. of 

the 15th ACM Symposium on Operating system 
Principles, pp. 267-284, 1995 

[11] O. Nierstrasz, S. Gibbs and D. Tsichritzis, “Component-
Oriented Software Development”, Comm. of the ACM 
35(9):160-164, 1992 

[12] D. Box et al., “Simple Object Access Protocol (SOAP) 
1.1”, W3C Note 08, May 2000 (see also 
http://www.w3.org/TR/SOAP) 

[13] G. Glass, “Web Services: Building Blocks for 
Distributed Systems”, Prentice Hall, 2002 

[14] E. Barsotti, A. Booth and M. Bowden, “Effects of 
Various Event Building Techniques of Data Acquisition 
System Architectures”, Fermilab note FERMILAB-
CONF-90/61, Batavia IL, USA,1990. 

[15] The CMS collaboration, “The Tracker System Project”, 
CERN/LHCC 98-6, CMS TDR 5, April 15, 1998 

[16] A. Zghiche, “Test Of The CMS Microstrip Silicon 
Tracker Readout And Control System”, Nucl. Inst. 
Meth. Phys. Res. A, Elsevier NH, A:461(1-3):470-473, 
2001 

[17] T. Johnson, “JAS3 – A General Purpose Data Analysis 
Framework for HENP and Beyond”, in Proc. of same 
conference (CHEP 2003) 

[18] The CMS collaboration, “The Muon Project”, 
CERN/LHCC 97-32, CMS TDR 3, December 15, 1997 

[19] V. Brigljevic et al., “Run Control and Monitor System 
for the CMS Experiment”, in Proc. of same conference 
(CHEP 2003) 

[20] V. Brigljevic et al., “Studies for the CMS Event Builder 
with Ethernet and Myrinet”, in Proc. of same conference 
(CHEP 2003) 

[21] The CMS collaboration, “The Trigger and Data 
Acquisition Project, Volume II. Data Acquisition & 
High-Level Trigger”, CERN/LHCC 2002-26, CMS 
TDR 6.2, December 15, 2002 

 

 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6MOGT008 ePrint hep-ex/0305076


