

Using XDAQ in Application Scenarios of the CMS Experiment
V. Brigljevic, G. Bruno, E. Cano, A. Csilling, S. Cittolin, D. Gigi, F. Glege, M. Gulmini1, J. Gutleber*,
C. Jacobs, M. Kozlowski, H. Larsen, I. Magrans, F. Meijers, E. Meschi, L. Mirabito, S. Murray, A. Oh, L.
Orsini, L. Pollet, A. Racz, D. Samyn, P. Scharff-Hansen, P. Sphicas2, C. Schwick
CERN, European Organization for Nuclear Research, Geneva, Switzerland
1Also at Laboratori Nazionali di Legnaro‚ INFN, Legnaro, Italy
2Also at University of Athens, Greece

F. Drouhin
Universite de Haute-Alsace, Mulhouse-France - Institut de Recherche Subatomique de Strasbourg, France

L. Berti, G. Maron, N. Toniolo, L. Zangrando
INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

S. Ventura
INFN - Sezione di Padova, Padova, Italy

S. Erhan
University of California, Los Angeles, California, USA

V. O’ Dell, I. Suzuki
Fermi National Accelerator Laboratory, Batavia, Illinois, USA

*presented by Johannes Gutleber (Johannes.Gutleber@cern.ch)

XDAQ is a generic data acquisition software environment that emerged from a rich set of of use-cases encountered in the CMS
experiment. They cover not the deployment for multiple sub-detectors and the operation of different processing and networking
equipment as well as a distributed collaboration of users with different needs. The use of the software in various application scenarios
demonstrated the viability of the approach. We discuss two applications, the tracker local DAQ system for front-end commissioning and
the muon chamber validation system. The description is completed by a brief overview of XDAQ.

1. INTRODUCTION

Software for data acquisition (DAQ) systems does not
only comprise the application task, but also requires
functions to integrate diverse hardware devices for
configuration and data interchange. With traditional tools
this can become a cumbersome and time-consuming task.
Application software that relies on direct use of the device
driver interface affects program configurability. Some
devices are accessed through system calls, others rely on
memory mapping or have special requirements like the
existence of memory that can be used for DMA operations.
Support for configuration is dependent on the operating
system platform. Concurrent use of multiple different
networking technologies transparently at application level is
not easily achievable with this approach. Message passing
libraries, such as MPI [1] provide communication
abstraction but do merely support the integration of diverse
technologies. Moreover, different tasks in high-energy
physics data acquisition show striking similarities although
the underlying networking and processing devices can be
entirely different. Recognition of these limitations triggered
an abstraction from a pure application-oriented view of data
acquisition. Related projects showed that this direction is
promising. CODA [2] for example, presents an integrated
data acquisition environment. Highly portable and feature
rich, it is, however, limited in terms of integration with other
systems because of proprietary protocols and formats.

We approached the problem by filtering out generic
requirements that are common to various tasks in high-

energy physics [3]. We then established a software product
line [4], specifically designed for distributed data acquisition
systems based on the integration of various networking
devices and commodity computing systems. This suite,
called XDAQ, includes the generic requirements documents,
design templates, a software process environment, a
distributed processing environment and various generic
software components that can be tailored to a variety of
application scenarios (see figure 1). Applying the product
line approach to data acquisition aims, however, at shifting
the focus from application programming tasks to integration
tasks, thus speeding up application development and
obtaining good performance by using well-established and
tested design patterns. Before we present the use of XDAQ
in some of the application scenarios of the CMS experiment,
we outline basic functionalities of the software environment.

2. XDAQ

XDAQ is a software product line that has been designed
[5] to match the diverse requirements of data acquisition
application scenarios of the CMS experiment. These include
the central DAQ, sub-detector local DAQ systems for
commissioning, debugging, configuration, monitoring and
calibration purposes, test-beam and detector production
installations as well as design verification and demonstration
purposes.

The product line comprises sets of documentation and
software packages that are generic enough to be used for
several application scenarios, but as specific as possible to

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOGT008 ePrint hep-ex/0305076

cover aspects that are critical to stable and efficient DAQ

operation.

Figure 1: Overview of the XDAQ software product line. The
arrows indicate the work flow of the software process that
leads to the production of DAQ systems and the extension of
the product line asset base.

2.1. Documentation

The documentation includes besides a description of the
project environment, design documents, software production
guidelines, user- and test manuals a generic requirements
specification. It captures requirements that are common to a
large set of data acquisition systems, which aim to use
commodity computing and networking equipment. At
functional level the requirements cover communication,
configuration, monitoring and control tasks. In addition,
various non-functional requirements like performance
flexibility, maintainability and portability are included. This
description must be completed by the requirements that are
specific to a particular application scenario and will lead to
tailoring of the generic application components that are
provided with the suite. Some upcoming requirements may
eventually be found in multiple environments and can
eventually end up in the product-line requirements
specification.

A second important documentation set is the collection of
companion manuals. It serves as a production guide, telling a
user how to build a specific data acquisition application by
using the generic processing environment and the included
application components. Some manuals focus on tailoring
aspects, i.e. how to augment the existing components with
the additional functionalities required by the application.
Others give insight in using existing functions for the
necessary programming tasks.

2.2. Distributed Processing Environment

XDAQ includes a distributed processing environment
called “the executive” that provides applications with the
necessary functions for communication, configuration
control and monitoring [5, 6]. Written entirely in C++ with
an emphasis on platform independence, it implements well-
established techniques to provide applications with efficient,
asynchronous communication. They include the use of
memory pools for fast and predictable buffer allocation [7],
support for zero-copy operation [8, 9] and an efficient
dispatching mechanism for an event-driven processing
scheme [10]. A copy of the executive process runs on every
processing node in the data acquisition network.
Applications are modeled according to a software
component model [11] and follow a pre-scribed interface.
They are compiled and the object code is loaded
dynamically, at run-time into a running executive. Multiple
application components, even of the same application class
may coexist in a single executive process. All configuration,
control and monitoring can be performed through the
SOAP/http [12] protocol, widely used in Web enabled
applications [13]. A rich set of data structures, including
lists, vectors are exportable and can be inspected by clients
through the executive SOAP services. Histograms are
mapped to data structures, too. They can also be retrieved
via SOAP.

2.3. Generic Event Builder

In addition to documentation and the executive, XDAQ
includes a collection of generic applications. They are ready
for use in various application scenarios with tailoring points
that allow the adaptation to specific environments. One of
them is an event builder [14] that consists of three
collaborating components, a readout unit (RU), a builder
unit (BU) and an event manager (EVM). The logical
components and interconnects of the event builder are
shown schematically in figure 2. A summary of the
acronyms is given in table 1. Data that are recorded by
custom readout devices are forwarded to the readout unit
application. How this is accomplished is described in an
associated document that is provided with a template
software module. A RU buffers data from subsequent single
physics events until it receives a control message to forward
a specific event fragment to a builder unit. A builder unit
collects the event fragments belonging to a single collision
event from all RUs and combines them to a complete event.
The BU exposes an interface to event data processors, called
the filter units (FU). This interface can be used to make
event data persistent or to apply event-filtering algorithms.
The EVM interfaces to the trigger readout electronics and so
controls the event building process by mediating control
messages between RUs and BUs. The interface between
EVM and trigger readout is documented and template code
for adaptation to various custom devices is provided.

Product line
requirements

Distributed
processing
environment

Generic
application

components

Configuration management infrastructure

Production
prescriptions

Customized DAQ System

Newly created
artifacts

XDAQ asset base

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOGT008 ePrint hep-ex/0305076

Figure 2: Outline of an event building data acquisition system.

3. APPLICATION SCENARIOS

We outline two of the various DAQ application scenarios
found in the CMS experiment. The first one is the silicon
microstrip detector commissioning of the tracker sub-
detector. The second use case is the test and validation of the
muon chambers. The system overviews include descriptions
of the software and hardware subsystems, including the
interconnection technologies.

Table 1: List of used acronyms.
Acronym Description
BCN Builder Control Network, a logical

network used to communicate requests
for event data from BU to EVM.

BDN Builder Data Network, logical network
used to send event data from RU to BU

BU Builder Unit, hardware/software sub-
system to collect event data from RUs

DCS Detector Control System, software
system to control/monitor high and low
voltages as well as various
environmental measurement values

DSN DAQ Service Network , logical network
to carry run control and DCS messages

EVM Event Manager, hardware/software
subsystem to mediate trigger
information for readout and event

building purposes as well as to control
the event building process

FEC Front-End Controller, mediates control
information between custom front-end
devices, the DCS or run-
control/monitor system

FED Front-End Driver, custom devices to
read data from the detector elements

FFN Filter Farm Network , logical network
transports event data from BUs to FUs

FRL Front-End Readout Link , interconnect
to read event data from FED into a RU.

FU Filter Unit, hardware/software sub-
system to process and store event data

LTC Local Trigger Controller, subsystem
for reading trigger information and for
controlling the trigger.

RCMS Run Control/Monitor System, software
subsystem to configure, control and
monitor the DAQ system

RCN Readout Control Network , logical
network to transport control
information for tagging events in a RU
and for forwarding the data to BUs

RU Readout Unit, hardware/software sub-
system for transient storage of event
data read from one or more FEDs

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOGT008 ePrint hep-ex/0305076

3.1. TRACKER COMMISSIONING

The CMS tracker [15] comprises silicon microstrip
detectors [16] that are read out via an analog optical link
connected to the analog to digital converters of the FED. The
control commands for the front-end chips, together with the
clock and level 1 trigger, are propagated to the detectors
through a proprietary token-ring network. This task is
carried out by a front-end controller (FEC) interacting with
several communication and control units. Commissioning of
detectors is a dedicated data acquisition task including the
communication channel described above. For example,
timing calibration is required, because the trigger is
propagated sequentially along the ring to the detectors and
the digitization time depends on the fiber lengths to the
FEDs. Additional calibration tasks include pulse shape
adjustment, optical link gain setting and front-end gain
calibration. Test setups include slow control facilities, such
as thermistors and I2C driven humidity probes, and HV/LV
control, which are driven by XDAQ applications. For this
purpose, a local data acquisition system that supports the
calibration loop process in addition to configuration and
control operations must be available. A high-level diagram
of the system in operation is shown in Figure 3. Subsystem
implementations are listed in Table 2. XDAQ together with
generic event builder components has been successfully used
to implement the system described above. Additional
specialized software components were developed to
interface to detector specific electronics and various
persistent data storage technologies. On-line visualization
facilities were implemented with Java Analysis Studio [17]
and interfaced to the system through the SOAP messaging
system. The implementation of the system took 4 man
months. Flexibility and scalability of XDAQ was
demonstrated by its use in different configurations. It was
possible to transfer an existing small setup from PSI (Zurich,
Switzerland) to tracker subsystem (rod and petal) tests
without modifications. This system was easily transferred to
a testbeam environment at CERN that comprised different
computer resources. This setup comprised in total 8
computers: one for the EVM, three for the FUs, one for the
BU, one for the RU (hosting three RU applications), one for
the FEC and one for run control/detector control.
Commissioning of the new system took 2 hours as opposed
to 30 hours with previous systems. At a rate of 2000 events
per spill (500 Hz with an average event size of 20 Kbytes), a
maximum data throughput of 100 Mbit/s was achieved,
which corresponds to the available Fast Ethernet capabilities
between the RU and BU subsystems. Recently, an upgrade
to Gigabit Ethernet has been performed, yielding a
throughput of 71 Mbytes/sec for the data acquired during
one spill. Operation periods spanned five days of continuous
and uninterrupted data taking resulting in around 600 Gbytes
of data produced for analysis. Novice users were able to
operate and re-configure the distributed system after a
training of approximately 1 hour by themselves. In particular
the application of configuration changes to re-distribute

processing tasks to multiple computers was achieved without
further assistance.
Figure 3: Overview of the tracker commissioning system

Table 2: Subsystem/interconnect implementation

Subsystem Implementation
BCN Fast Ethernet (I2O binary messages)
BDN Fast Ethernet (I2O binary messages)
BU Intel based PC (Linux)
DCS Custom (XDAQ based applications)
DSN Fast Ethernet (SOAP/http)
EVM Intel based PC (Linux)
FEC Intel based PC (Linux)
FED Custom PCI cards
FFN Fast Ethernet (I2O binary messages)
FRL PCI bus
FU Intel based PC (Linux)
LTC Custom PCI card
RCMS Java based (xdaqWin, JAXM)
RCN Fast Ethernet (I2O binary messages)
RU Intel based PC (Linux)

3.2. MUON Chamber Validation

The 250 chambers that make up the muon barrel
spectrometer [18] need to be tes ted with cosmic rays once
before they are shipped to CERN and once when they arrive.
Tests with muon beams at high data rates together with
coupling to other subdetectors are also necessary to validate
the detector behavior under realistic conditions. The
observables include occupancy of detector channels for
determining the particle hits, the drift time and the response

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4MOGT008 ePrint hep-ex/0305076

to dedicated test pulse events. A data acquisition system had
to be put in place to perform these tasks. XDAQ was used as
the generic platform to implement this system. As outlined
in Figure 4, the software required customization of three
parts, the local trigger controller (LTC), readout of custom
electronics through the VME bus and interfacing to a data
storage/analysis backend. For the acquisition task, the
XDAQ generic event builder components were used. Run
control was implemented by a prototype system that served
as a study environment for the CMS experiment run control
system [19]. As opposed to the tracker commissioning slow
control was performed by a separate, Windows based
system. A similar setup was used during a test period for the
Gamma Irradiation Facility at CERN. In this case, a muon
chamber was coupled to a resistive plate chamber (RPC)
detector and a beam ionization chamber to verify the
simultaneous response of the RPC and muon chambers. The
update of the existing system went smoothly. As a result of
this project, several new requirements were identified,
mainly covering configuration, control and monitoring.
Hardware platform heterogeneity (different bus systems,
byte ordering and data alignment rules), as well as the
presence of two different operating system platforms (Linux
and VxWorks), posed a challenge to the interoperability
among the system components. The supported platforms
included PowerPC based VME processors running the
VxWorks real-time operating system, and Intel based
personal computers with both Linux and VxWorks.

Table 2: Subsystem implementation

The provided abstraction fitted the need to switch between

processor and operating system types without additional
work. The required event rate of 10 kHz and the peak output
of 4 Mbytes/sec were well absorbed by the hardware (PCs,

VME CPUs and Fast Ethernet network) and software
installation in place. The high variance of the event sizes
stressed the buffer management system of XDAQ. Stable
operation under these conditions confirmed the robustness of
the design. Uptime measured over two weeks was 60%,
including penalties from changing hardware configurations.
From the initial intent to create the system to its completion,
including the learning phase, six man months were invested.
A system developed from scratch in the same time scale
would not have provided the seamless integration with later

appearing components (e.g. silicon beam telescope) and the
ability to efficiently carry out modifications and
configuration changes. Through this experience, confidence
has been gained that the proposed design of the software
infrastructure can fulfill the diverse functional DAQ
requirements of the experiment under design.

Figure 4: Overview of the Muon validation system.

4. SUMMARY

In this paper we outlined two application scenarios of
XDAQ in the CMS experiment. The creation of DAQ
systems for the tracker commissioning and the muon
chamber validation tasks were vital to ensure that the online
software infrastructure under design and implementation
eventually meets the experiments requirements. XDAQ
supports DAQ systems that aim to use commodity
computing and networking equipment. It is also evaluated
for use in the experiment’s central DAQ system that favors
this design choice. Performance and scalability studies for
the main DAQ system are currently done [20]. The
preliminary results from these studies show that the
performance of the software matches well the requirements
[21, section 2].

Subsystem Implementation
BCN Fast Ethernet (I2O binary messages)
BDN Fast Ethernet (I2O binary messages)
BU Intel based PC (Linux)
DSN Fast Ethernet (SOAP/http)
EVM Intel based PC (VxWorks)
FED Custom VME cards
FRL VME bus
LTC Custom PCI card
RCMS Java application (CMS prototype)
RCN Fast Ethernet (I2O b inary messages)
RU Intel based PC (Linux and VxWorks)

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5MOGT008 ePrint hep-ex/0305076

5. REFERENCES

[1] M. Snir, S. Otto, S Huss-Lederman, D. Walker, J.
Dongarra, “MPI: The Complete Reference”, The MIT
Press, 55 Hayward Street, Cambridge, MA 02142, USA,
ISBN 95-80471, 1995.

[2] W.A. Watson, “CODA: A Scalable, Distributed Data
Acquisition System”, Nuclear Science, IEEE
Transactions on , 41(1):61-68, 1994. See also
http://coda.jlab.org

[3] J. Gutleber, S. Murray, L. Orsini, “Towards a
Homogeneous Architecture for High-Energy Physics
Data Acquisition Systems”, Comp. Phys. Comm.,
Elsevier NH, cpc2578, 2003, in print.

[4] P. Clements, L. Northrop, “Software Product Lines”,
Addison-Wesley 2002, ISBN 0-201-70332-7

[5] J. Gutleber and L. Orsini, “Software Architecture for
Processing Clusters based on I2O”, Cluster Computing,
the Journal of Networks, Software and Applications,
Kluwer Academic Publishers, 5(1):55-65, 2002

[6] J. Gutleber et al., Clustered Data Acquisition for the
CMS experiment, Computing in High Energy and
Nuclear Physics, Beijing, China, September 3-7 2001,
Science press, pp. 601-605

[7] R.M. Fujimoto and K.S. Panesar, “Buffer management
in shared-Memory Time Warp Systems”, ACM
SIGSIM Simulation Digest, 25(1):149-156, 1995

[8] “Network Protocol Toolkit, User’s Guide V 5.4”,
edition 1, Part # DOC-12820-ZD-03, Wind River
systems, Inc., 500 Wind River Way, Alameda, CA
94501-1153, USA, July 7, 1999

[9] M. Thadani and Khalidi, “An efficient zero -copy I/O
framework for UNIX”, Technical Report, SMLI TR95 -
39, Sun Microsystems Lab, Inc., May 1995

[10] B.N. Bershad et al., “Extensibility, Safety and
Performance in the SPIN Operating System”, in Proc. of

the 15th ACM Symposium on Operating system
Principles, pp. 267-284, 1995

[11] O. Nierstrasz, S. Gibbs and D. Tsichritzis, “Component-
Oriented Software Development”, Comm. of the ACM
35(9):160-164, 1992

[12] D. Box et al., “Simple Object Access Protocol (SOAP)
1.1”, W3C Note 08, May 2000 (see also
http://www.w3.org/TR/SOAP)

[13] G. Glass, “Web Services: Building Blocks for
Distributed Systems”, Prentice Hall, 2002

[14] E. Barsotti, A. Booth and M. Bowden, “Effects of
Various Event Building Techniques of Data Acquisition
System Architectures”, Fermilab note FERMILAB-
CONF-90/61, Batavia IL, USA,1990.

[15] The CMS collaboration, “The Tracker System Project”,
CERN/LHCC 98-6, CMS TDR 5, April 15, 1998

[16] A. Zghiche, “Test Of The CMS Microstrip Silicon
Tracker Readout And Control System”, Nucl. Inst.
Meth. Phys. Res. A, Elsevier NH, A:461(1-3):470-473,
2001

[17] T. Johnson, “JAS3 – A General Purpose Data Analysis
Framework for HENP and Beyond”, in Proc. of same
conference (CHEP 2003)

[18] The CMS collaboration, “The Muon Project”,
CERN/LHCC 97-32, CMS TDR 3, December 15, 1997

[19] V. Brigljevic et al., “Run Control and Monitor System
for the CMS Experiment”, in Proc. of same conference
(CHEP 2003)

[20] V. Brigljevic et al., “Studies for the CMS Event Builder
with Ethernet and Myrinet”, in Proc. of same conference
(CHEP 2003)

[21] The CMS collaboration, “The Trigger and Data
Acquisition Project, Volume II. Data Acquisition &
High-Level Trigger”, CERN/LHCC 2002-26, CMS
TDR 6.2, December 15, 2002

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6MOGT008 ePrint hep-ex/0305076

